Optimization Days 2019
HEC Montréal, May 13-15, 2019
JOPT2019
HEC Montréal, 13 — 15 May 2019
MD1 Tutorial - Modern Optimization for Structured Machine Learning
May 13, 2019 03:30 PM – 05:10 PM
Location: CPA du Québec
Chaired by Jean-Yves Potvin
1 Presentation
-
03:30 PM - 05:10 PM
Modern Optimization for Structured Machine Learning
Machine learning has become a popular application domain for modern optimization techniques, pushing its algorithmic frontier. The need for large scale optimization algorithms which can handle millions of dimensions or data points, typical for the big data era, have brought a resurgence of interest for first order algorithms, making us revisit the venerable stochastic gradient method [Robbins-Monro 1951]as well as the Frank-Wolfe algorithm [Frank-Wolfe 1956]. In this talk, I will review recent improvements on these algorithms which can exploit the structure of modern machine learning approaches. I will explain why the Frank-Wolfe algorithm has become so popular lately; and present a surprising tweak on the stochastic gradient method which yields a fast linear convergence rate. Motivating applications will include weakly supervised video analysis and structured prediction problems.