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Outline 

•  Learn Constraint Programming in  
15 minutes or less! 

•  Why Hybridize? 
•  Three Decomposition Examples 
•  Final Comments 
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Constraint Programming 

•  Optimization technology built  
around tree search and inference 
– branch-and-infer 

•  Like MIP but: 
– No restriction on what a constraint is 

•  Just as MIP lives and dies depending on 
the relaxation, CP lives and dies 
depending on inference 
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Implications 

•  There is no general relaxation 
•  So how do you avoid enumerating the 

whole space? 
– Develop constraints that represent a common 

combinatorial sub-structure 
– Develop constraint-specific inference 

techniques that “prune” the search tree 

4 

“Global Constraints” 
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Inference:  
Domain Consistency (DC) 

•  Each value in the domain of each variable 
appears in at least one satisfying solution 
to the constraint 

•  Inference: remove values that do not meet 
the requirement 
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V1 V2 
< 

{0,1,2,3,4,5} {0,1,2,3,4,5} 

A constraint network is DC if all of its constraints are DC 
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Global Constraint 

•  An aggregate constraint over an arbitrary 
number of variables that: 
1.  Represents some repeatedly occurring 

problem structure 
2.  Allows for efficient inference that is stronger 

than can be achieved if a set of non-
aggregated constraints is used to represent 
the structure 

6 
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Fig. 5: The CP model of Schaus et al. [2].
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Fig. 6: The CP model of Schaus et al. [2].

expresses that a nurse can only work in one zone during the shift, where Z
k

is the
set of nurses assigned to zone k, i.e., Z

k

=
S

i2Pk
N

i

. The pairwiseDisjoint

constraint enforces pairwise empty intersections among variables representing
the set of nurses working in each zone. Constraint (51) expresses bounds on the
workload of each nurse. Since there are always more patients than nurses, each
nurse will be assigned to at least one patient and, therefore, the W

j

variables
have a lower bound equal to the minimum acuity among all patients.

A customized search heuristic is an important aspect of the success of the CP
model. First, the symmetry arising from the interchangeability of the nurses is
dynamically broken during search by exploiting the equivalence among all nurses
who have not yet been assigned a patient. Second, problem-specific variable
and value ordering heuristics are implemented: the unassigned patient with the
highest acuity is selected and assigned to the nurse with the current smallest
workload.

A.3 Balanced Academic Curriculum Problem

CP Model for a Nurse 
Scheduling Problem 

[Schaus et al. 2009] CPAIOR, 248-262, 2009. 
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DC for a Global Constraint 

•  Given: c (v1,..., vm) 
•  c is domain consistent iff for all variables 

vi, for all values di є Di there exists a  
tuple of values  

 [dj є Dj], j≠i  
such that  

 (vi=di,[vj=dj]) → T  

8 

Need a “solution” 
to the constraint 

that supports vi=di 
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All-Diff vs. Clique of ≠ 

•  all-diff(v1, v2, …, vn) =def  
 vi ≠ vj for 1 ≤ i < j ≤ n 

 

V1 V2 
≠ 

{1,3} {1,3} 

V3 
≠ ≠ 

{1,3} 

V1 V2 

{1,3} {1,3} 

V3 
{1,3} 

all-diff 

What is the complexity of making an all-diff DC? 



University of Toronto 
Mechanical & Industrial Engineering 

All-different: Value Graph 

•  Example 
– D1 = {B,C,D,E},  

D2 = {B,C},  
D3 = {A,B,C,D},  
D4 = {B,C} 

– all-diff(v1,…,v4) 

1 

2 

3 

4 

A 

B 

C 

D 

E 

A variable assignment is part of a 
solution to an all-diff constraint iff its 
corresponding edge is in a maximal 
matching [Regin 1994] 
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So … 

•  Over the past 25 years, CPers have 
developed a large number (400+) global 
constraints, accompanying inference 
algorithms, and complexity results 
–  In practice, a smaller number of global 

constraints (~25) is commonly used 
•  Modeling is the “plugging together” of 

these global constraints 

12 
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What is CP Good At? 

•  CP wins or loses on inference! 
•  Problems with  

–  interacting combinatorial structures that make 
it difficult to find a feasible solution 

– strong back-propagation from the cost 
function 

•  Scheduling is one of the most successful 
applications of CP 

18 
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Job Shop Scheduling 
(10 instances: 20X20) 

19 

% above 
best 

known 
solution 

MIP 

CP 

State-of-art:  
Tabu search +  
customized CP 

MIP (multi-thread, tuned) 

[Ku & B. 2016] C&OR, 73, 165-173, 2016. 
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Scheduling Inference  
(Edge-Finding) 

20 
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Scheduling Inference  
(Edge-Finding) 

21 
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CP Summary 

•  Very rich constraint language 
– Modeling is plugging together  

useful sub-structure (i.e., global constraints) 
•  Branch-and-infer 

– Tree search 
– At each node, run the inference algorithms in 

each constraint to reduce the search space 
–  Inference in one constraint “propagates” to 

others 

22 
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Outline 

•  Learn Constraint Programming in  
15 minutes or less! 

•  Why Hybridize? 
•  Three Decomposition Examples 
•  Final Comments 

23 
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Why Hybridize? 
24 

This question is different (and orthogonal) to the question of 
“Why decompose?” 
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Decomposition-based  
CP-Hybrids 
•  Problems where CP brings  

something to the table, but  
doesn’t have the whole answer 
– where there is a combination of mostly global 

cost-based reasoning and mostly local 
feasibility problems 

– where inference works well except for one 
problem characteristic 

•  e.g., scheduling with alternatives 

25 
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Problems with … 

•  “Cascading” decisions 
– some sort of assignment that activates or 

constrains other variables 
•  assign jobs to resources/due dates then schedule 
•  assign customers to open facilities then pack 
•  decide # workers and then find policy 

•  Nice linear sub-problem relaxations  
and cuts 

•  A sub-problem where inference can 
perform strongly 

26 
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Resource Allocation & 
Scheduling 

27 

Assign jobs 

Schedule Schedule Schedule 

[Hooker 2005] Constraints, 10, 385-401, 2005. 
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Edge-Finding 
28 

100 

20 

15 

10 

15 

0 10 75 

S est(S) lft(S) 
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70 100 

Problem: a reasonable number of resource assignments must be 
made before the strong inference techniques have any impact 



University of Toronto 
Mechanical & Industrial Engineering 

Three Examples 

•  Due date assignment  
and scheduling 

•  Facility location-allocation 

•  Dynamic front-room/back-
room service scheduling 

29 
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An Aircraft  
Maintenance  
Scheduling Problem 

30 

[Aramon Bajestani & B. 2013] JAIR, 47, 35-70, 2013. 
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Aircraft Maintenance  
Scheduling Problem  

0 T 

REPAIR SHOP 

Start Time End Time 

Flight Program 
 

Flight Program 

Plane Requirements 

Plane Requirements 

Plane Requirements 

When should each aircraft 
be ready? 

Flight Program 

Flight Program 
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Scheduling in the Repair Shop 

0 T 
Start Time End Time 

Time 

Resource  

Resource Requirement 

Processing Time 
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Master Problem 
Assign aircraft to due dates 
to maximize flight coverage 

Yes  

Sub-problems 
Is there a feasible repair 

shop schedule?  

Solution Approach: LBBD 

Flight Program 

0 T 

REPAIR SHOP 

Start Time End Time 

Flight Program 

Flight Program 

Plane 
 Requirements 

Plane  
Requirements 

Plane 
 Requirements 

Time 

Resource  

No: Cut Solution  

xij= 
1 if due date i is assigned to job j 
0 otherwise  
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Resource  

0 T 
d1 d2 d3 

0 T 
d1 d2 d3 

Relaxation 

Resource  

Time Time 

Tighter  
Relaxation 



University of Toronto 
Mechanical & Industrial Engineering 

35 

Master Problem 
Assign aircraft to due dates 

Sub-problems 
Cumulative Constraint 
Is there a feasible repair shop 

schedule?  

Solution  No  

0 T

Flight Program 

Flight Program 

Flight Program 

Plane 
 Requirements 

Plane  
Requirements 

Plane 
 Requirements 

d1 d2 d3 

 
Cut 
 

Time 

Resource  
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0 T
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Flight Program 

Flight Program 
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Time 
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xij d1 d2 d3 
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1 0 0 

0 1 0 

0 1 0 

0 0 1 
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Computational Results 
38 
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40 

Method Mean 
Time (s) 

Mean 
Iterations 
(Median) 

Mean % MP 
Time 

(Median)  

Mean % SP 
Time 

 (Median) 

% Solved 
to Opt. 

Benders-MIP-T 213 66.4 (8.0) 52% (54%) 48% (46%) 98% 
Benders-MIP 227 64.7 (8.0) 62% (67%) 38% (33%) 98% 
MIP 837 - - - 94% 
Dispatch Rule ≈ 0 - - - 10%* 
CP 6857 - - - 5% 

 
Computational Results 
 

•  420 problem instances 
•  7200-second time limit 
•  IBM ILOG CPLEX & CPO 12.3 



University of Toronto 
Mechanical & Industrial Engineering 

Decomposition-based  
CP-Hybrids 
•  Problems where CP brings  

something to the table, but  
doesn’t have the whole answer 
– where there is a combination of mostly global 

cost-based reasoning and mostly local 
feasibility problems 

– where inference works well except for one 
problem characteristic 

•  e.g., scheduling with alternatives 

41 

Due date assignment 
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A Location- Allocation 
Problem 

42 

[Fazel-Zarandi & B. 2013] IJOC, 24, 399-415, 2012. 
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A Location-Allocation Problem 

1 
2 

3 

3 

2 
1 

2 

1 

Poten&al	  
facili&es	  

Customers	  

43 
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Problem 

•  Choose facilities to open (pj = 1), given 
fixed facility cost (fj) 

•  Assign customers to facilities (xij) given 
service cost (cij) 

•  Assign customers to trucks (trucki) given 
cost per truck (u) and maximum travel 
distance for each truck (l) 

44 

[Alberada-Sambola, et al. 2009] C&OR, 36(2), 597-611, 2009. 
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LBBD Model 
45 

Master Problem 
Open facilities, assign customers, and 

assign # of trucks to each facility 

Sub-problems 
At each facility, pack trips onto 

allocated trucks 

Solution  Cut 
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Master Problem 
46 

opening + service + truck 
costs 

customers assign to one facility 

facility capacity 

truck distance 

sub-problem relaxation 

only assign customer to 
open facilities 
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Sub-problems 
47 

Series of feasibility 
problems 
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Cut 
48 

Variable in 
master 

Optimal value 
from TASP 

UB on truck reduction 
if one visit is removed 
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Results 
49 

IBM CPLEX 11.0 
IBM ILOG Solver 6.5 

Time-out: 24 hours 
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Decomposition-based  
CP-Hybrids 
•  Problems where CP brings  

something to the table, but  
doesn’t have the whole answer 
– where there is a combination of mostly global 

cost-based reasoning and mostly local 
feasibility problems 

– where inference works well except for one 
problem characteristic 

•  e.g., scheduling with alternatives 

50 

Global assignments, local packing 
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Dynamic  
Front-Room/Back-Room 
Service Scheduling 

51 

[Terekhov, B., & Brown 2009] IJOC, 21(4), 549-561, 2009. 
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A Front-Room/Back-Room 
Problem 

52 

Front room 

Back room 
When to switch? 
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Problem Description 
53 

front-room only back-room only cross-trained 
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Problem Description 

•  Determine the number of front-room, back-
room, and cross-trained workers to hire 
and a policy for switching workers that: 
– Minimizes total cost 
– Meets a bound on the maximum expected 

customer waiting time 
– Ensures all the work in the back-room is done 

54 
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Problem Description 
55 

Cost of front-room 
workers 

# of front-room 
workers 

[Terekhov, B., & Brown 2009] IJOC, 21(4), 549-561, 2009. 
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Cost Cases 
56 

[Terekhov & B. 2009] EJOR, 198, 223-231, 2009. 

Cross-trained workers cost more than single 
skill workers but less than two of them 
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LBBD Model 
57 

Master Problem 
Assign # of workers: f, x, b 

Sub-problem 
Find a switching policy that meets 
bounds on front-room waiting and 

gets back-room work done 

Solution  Cut 
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Master Problem 
58 

# front-room workers if x = 0  

# back-room workers if x = 0  

All these constraints 
are really a 

relaxation of the 
sub-problem 
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Cut 
59 

Value of x in 
last master 

solution 

Value of f in 
last master 

solution 

Value of b in 
last master 

solution 

•  If sub-problem is infeasible, we need at 
least one more worker 

•  Nogood cut 
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Sub-problem 

•  Find a policy for switching workers that: 
– Satisfies expected customer waiting time 
– Ensures all the work in the back-room is done 

60 
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Problem Formulation 
•  Max # of customers – S 
•  # of workers – N 
•  Customers arrive according to 

Poisson process with rate λ 
•  Service times follow exponential  

distribution with rate µ 

[Berman et al. 2005] EJOR, 167(2), 349-369, 2005. 
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Switching Policy 

0

1

2

3

#
 w

or
ke

rs

0 1 2 3 4 5 6

# customers

(k0, k1, k2, …, kN) 

[Berman et al. 2005] EJOR, 167(2), 349-369. 2005. 

Should have i+f 
workers in  

the front-room  
when there are 

between 
 ki-1+1 and ki 
customers  

(0, 2, 3, 6) 

k0 k1 k2 k3 

62 

Obs: 1) ki-1 < ki  2) lower ki less waiting 
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What Are We Trying To Do? 

•  Construct a CP model with switching 
points (ki’s) as decision variables 

63 

Switching 
points 

(ki)  

Probability  
of j  

customers 
in system  

(P(j))  

Wq, B 
Balance 

equations 
QT 

formulation 
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Formally … 
64 

[Terekhov & B. 2008] JAIR, 32, 123-167, 2008. 

waiting time below bound 

back-room work gets done 

balance 
equations 

expected # of workers in front-room 

expected # of workers in back-room 

expected queue length 

expected waiting time 



University of Toronto 
Mechanical & Industrial Engineering 

Sub-problem Results? 
65 

# Problem Instances (out of 300) solved and 
proved optimal in 10 minutes.  

[Terekhov & B. 2008] JAIR, 32, 123-167, 2008. 

•  30 instances each for S = {10, 20, …, 100} 
•  Other parameters randomly generated  
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Exploiting the Policy Structure 
66 

k0 k1 k2 k3 

Possible 
values 

0 

S •  When ki’s at UB, 
Wq maximized 

•  When ki’s at LB, 
Wq is minimized  

Obs: 1) ki-1 < ki  2) lower ki less waiting 
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Exploiting the Policy Structure 
67 

k0 k1 k2 k3 

•  Idea 
– Set ki at its UB,  

set kj, j ≠ i at LB  
–  If Wq > Wu, remove UB 

from domain of ki 
•  Symmetric reasoning 

for B 

Obs: 1) ki-1 < ki  2) lower ki less waiting 
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Exploiting the Policy Structure 
68 

k0 k1 k2 k3 

•  Idea 
– Set ki at its UB,  

set kj, j ≠ i at LB  
–  If Wq > Wu, remove UB 

from domain of ki 
•  Symmetric reasoning 

for B 
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“Shaving” 

•  Idea 
– Set an (integer) variable x at its LB (UB) and 

propagate 
–  If infeasible, then the LB (UB) of x can be 

tightened 
•  Similar to Singleton Arc Consistency 

69 

[Martin & Shmoys 1996] IPCO, 389-403, 1996. 
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Sub-problem Results with 
Shaving 

71 

# Problem Instances (out of 300) solved and 
proved optimal in 10 minutes.  

No Shaving 
Shaving before search 

and at each new 
incumbent 

[Terekhov & B. 2008] JAIR, 32, 123-167, 2008. 
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Global Results 
72 

Max # number of customers (300 instances) 

M
ea

ns
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Decomposition-based  
CP-Hybrids 
•  Problems where CP brings  

something to the table, but  
doesn’t have the whole answer 
– where there is a combination of mostly global 

cost-based reasoning and mostly local 
feasibility problems 

– where inference works well except for one 
problem characteristic 

•  e.g., scheduling with alternatives 

75 

MP defines # variables, not clear how 
to model sub-problem without CP  
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•  The master problem is not actually solved 
with MIP – we used CP 
– So this isn’t really a MIP/CP hybrid,  

but it could be 

77 
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Outline 

•  Learn Constraint Programming in  
15 minutes or less! 

•  Why Hybridize? 
•  Three Decomposition Examples 
•  Final Comments 

78 
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79 

Would MIP/CP LBBD 
work for my problem? 
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Decomposition-based  
CP-Hybrids 
•  Problems where CP brings  

something to the table, but  
doesn’t have the whole answer 
– where there is a combination of mostly global 

cost-based reasoning and mostly local 
feasibility problems 

– where inference works well except for one 
problem characteristic 

•  e.g., scheduling with alternatives 

80 
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Problems with … 

•  “Cascading” decisions 
– some sort of assignment that activates or 

constrains other variables 
•  assign jobs to resources/due dates then schedule 
•  customers to open facilities then pack 
•  decide # workers and then find policy 

•  Nice linear sub-problem relaxations  
and cuts 

•  A sub-problem where inference can 
perform strongly 

81 
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82 

What about a CP 
master and a MIP  

sub-problem? 
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CP then MIP? 

•  There are examples in the literature but it 
is less developed 
– Relaxations and cuts are both better 

understood in MIP 
– Optimization master favours MIP and 

feasibility sub-problems favour CP (not 
uncommon)  

83 
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When is he going to 
stop talking? 
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Post-Doctoral Position 

•  AI Planning and  
Mathematical Programming 
– PhD in OR or CS 
– Strong math and  

software skills 
– Publication record 
– Deadline: July 1, 2016  

85 

tidel.mie.utoronto.ca/AI_MP_PostDoc2016.pdf 
jcb@mie.utoronto.ca 
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