Hybrid CP/MIP and Benders Decomposition Methods

J. Christopher Beck
Department of Mechanical & Industrial Engineering
University of Toronto
Canada

jcb@mie.utoronto.ca

Outline

- Learn Constraint Programming in 15 minutes or less!
- Why Hybridize?
- Three Decomposition Examples
- Final Comments

Constraint Programming

- Optimization technology built around tree search and inference
 - branch-and-infer
- Like MIP but:
 - No restriction on what a constraint is
- Just as MIP lives and dies depending on the relaxation, CP lives and dies depending on inference

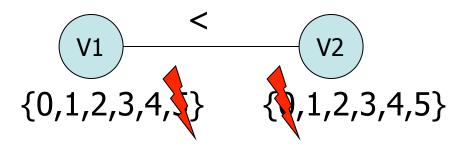
Implications

"Global Constraints"

- There is no general relaxation
- So how do you avoid enumerating the whole space?
 - Develop constraints that represent a common combinatorial sub-structure
 - Develop constraint-specific inference techniques that "prune" the search tree

Inference: Domain Consistency (DC)

- Each value in the domain of each variable appears in at least one satisfying solution to the constraint
- Inference: remove values that do not meet the requirement



A constraint network is DC if all of its constraints are DC

Global Constraint

- An aggregate constraint over an arbitrary number of variables that:
 - Represents some repeatedly occurring problem structure
 - 2. Allows for efficient inference that is stronger than can be achieved if a set of non-aggregated constraints is used to represent the structure

CP Model for a Nurse Scheduling Problem

```
\begin{array}{ll} \min & \sigma \\ \text{s.t.} & \operatorname{spread}(\{W_1,\ldots,W_n\},\mu,\sigma), \\ & \operatorname{multiknapsack}(\{N_1,\ldots,N_m\},\{A_1,\ldots,A_m\},\{W_1,\ldots,W_n\}), \\ & \operatorname{cardinality}(\{N_1,\ldots,N_m\},\{1,\ldots,n\},\{1,\ldots,MaxPatients\}), \\ & \operatorname{pairwiseDisjoint}(\{Z_1,\ldots,Z_p\}), \\ & Z_k = \bigcup_{i \in P_k} N_i, & k = 1,\ldots,p \\ & W_j \in \{\min\{A_i\},\ldots,MaxAcuity\}, & j = 1,\ldots,n \\ & N_i \in \{1,\ldots,n\}. & i = 1,\ldots,m \end{array}
```

DC for a Global Constraint

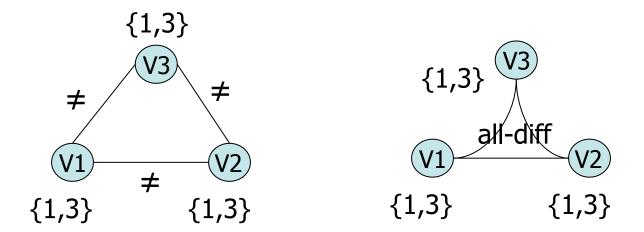
- Given: c (v₁,..., v_m)
- c is domain consistent iff for all variables v_i, for all values d_i ε D_i there exists a tuple of values

$$[d_{j} \in D_{j}], j \neq i$$
such that
$$(v_{i}=d_{i},[v_{j}=d_{j}]) \rightarrow T$$

Need a "solution" to the constraint that supports $v_i = d_i$

All-Diff vs. Clique of ≠

• all-diff($v_1, v_2, ..., v_n$) =_{def} $v_i \neq v_j$ for $1 \leq i < j \leq n$



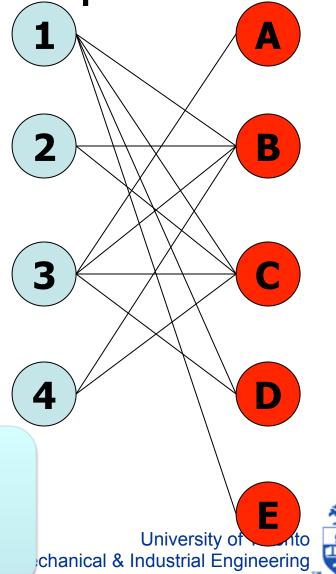
What is the complexity of making an all-diff DC?

All-different: Value Graph

Example

$$-D_1 = \{B,C,D,E\},\ D_2 = \{B,C\},\ D_3 = \{A,B,C,D\},\ D_4 = \{B,C\}$$
 $- \text{all-diff}(v_1,...,v_4)$

A variable assignment is part of a solution to an all-diff constraint iff its corresponding edge is in a maximal matching [Regin 1994]

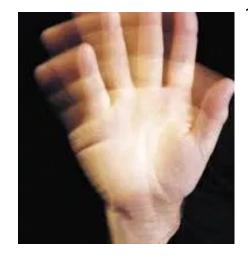


So ...

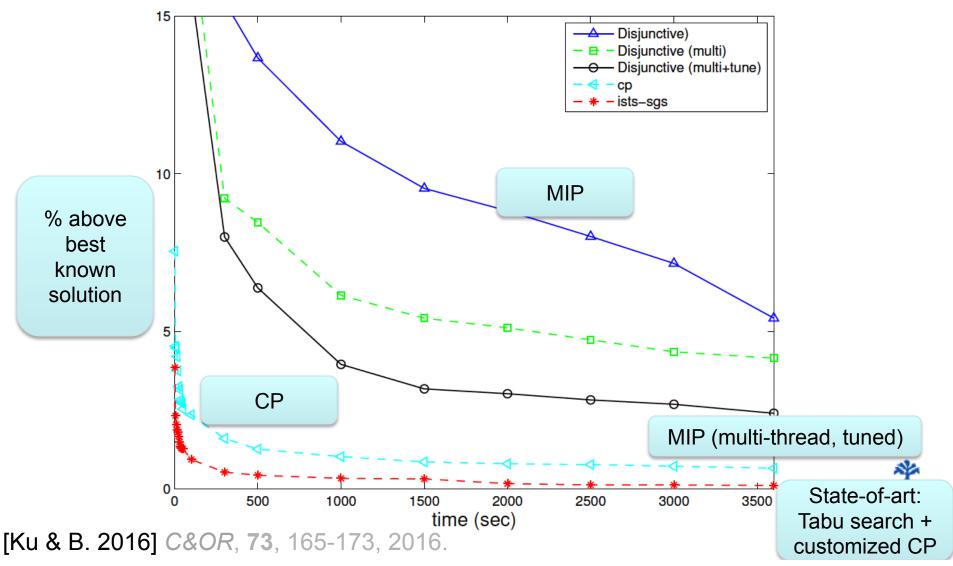
- Over the past 25 years, CPers have developed a large number (400+) global constraints, accompanying inference algorithms, and complexity results
 - In practice, a smaller number of global constraints (~25) is commonly used
- Modeling is the "plugging together" of these global constraints

What is CP Good At?

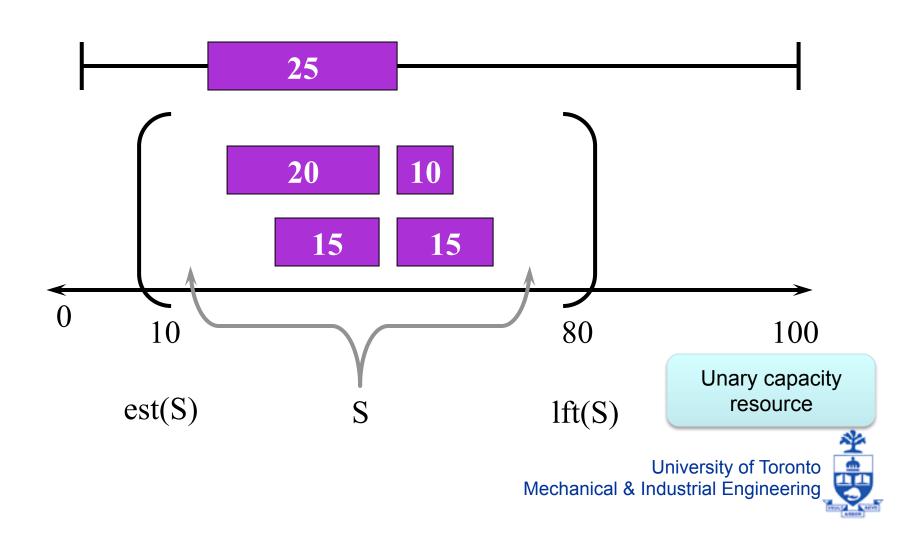
- CP wins or loses on inference!
- Problems with
 - interacting combinatorial structures that make it difficult to find a feasible solution
 - strong back-propagation from the cost function
- Scheduling is one of the most successful applications of CP



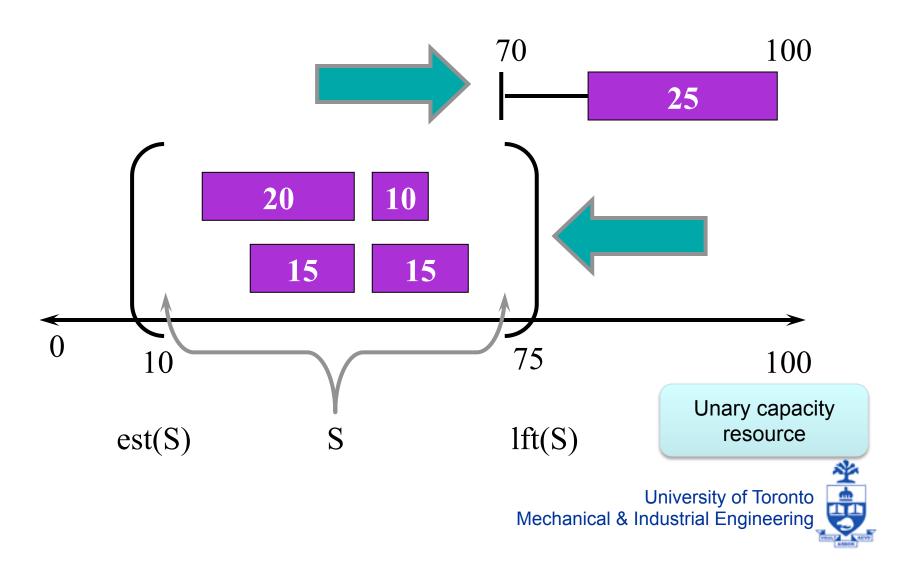
Job Shop Scheduling (10 instances: 20X20)



Scheduling Inference (Edge-Finding)



Scheduling Inference (Edge-Finding)



CP Summary

- Very rich constraint language
 - Modeling is plugging together useful sub-structure (i.e., global constraints)
- Branch-and-infer
 - Tree search
 - At each node, run the inference algorithms in each constraint to reduce the search space
 - Inference in one constraint "propagates" to others

Outline

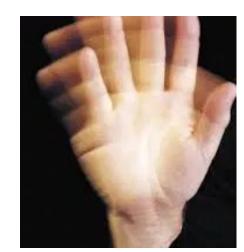
- Learn Constraint Programming in 15 minutes or less!
- Why Hybridize?
- Three Decomposition Examples
- Final Comments

Why Hybridize?

This question is different (and orthogonal) to the question of "Why decompose?"

Decomposition-based CP-Hybrids

 Problems where CP brings something to the table, but doesn't have the whole answer



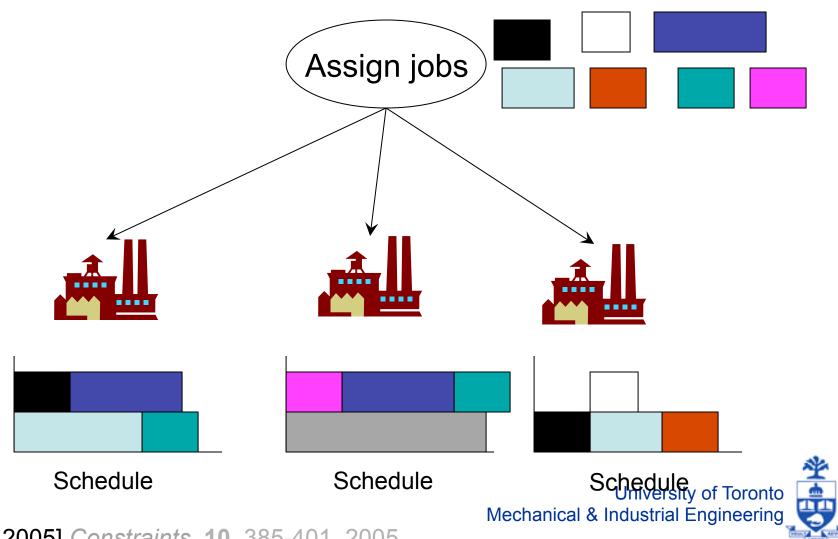
- where there is a combination of mostly global cost-based reasoning and mostly local feasibility problems
- where inference works well except for one problem characteristic
 - e.g., scheduling with alternatives

Problems with ...

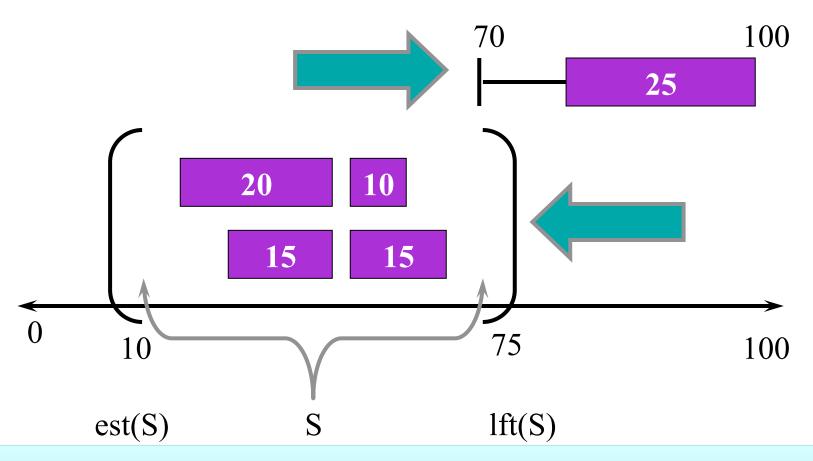
- "Cascading" decisions
 - some sort of assignment that activates or constrains other variables
 - assign jobs to resources/due dates then schedule
 - assign customers to open facilities then pack
 - decide # workers and then find policy
- Nice linear sub-problem relaxations and cuts
- A sub-problem where inference can perform strongly

 University of Toronto Mechanical & Industrial Engineering

Resource Allocation & Scheduling



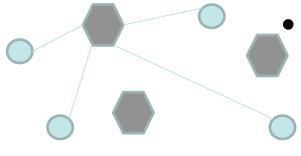
Edge-Finding



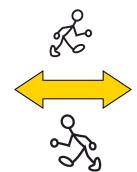
Problem: a reasonable number of resource assignments must be made before the strong inference techniques have any impact

Three Examples

 Due date assignment and scheduling



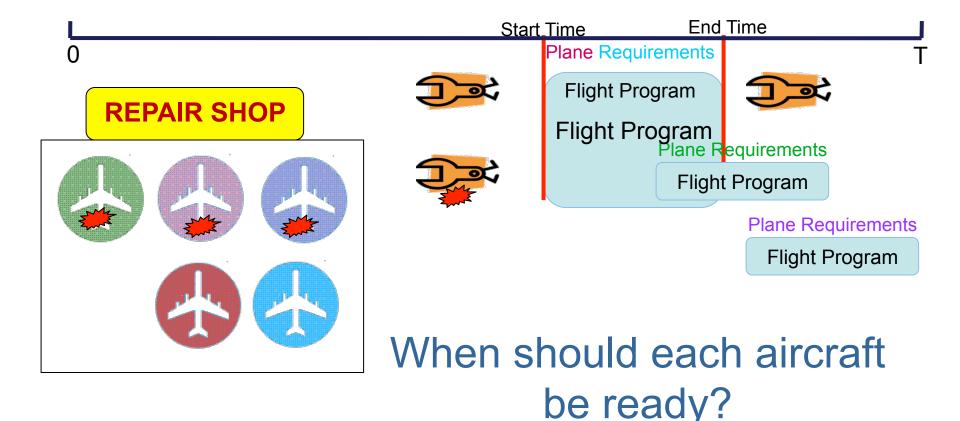
Facility location-allocation



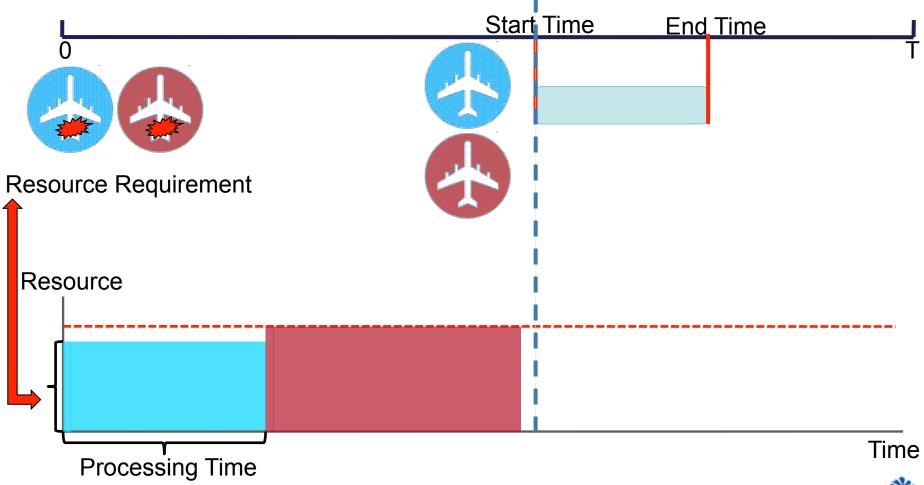
 Dynamic front-room/backroom service scheduling

An Aircraft
Maintenance
Scheduling Problem

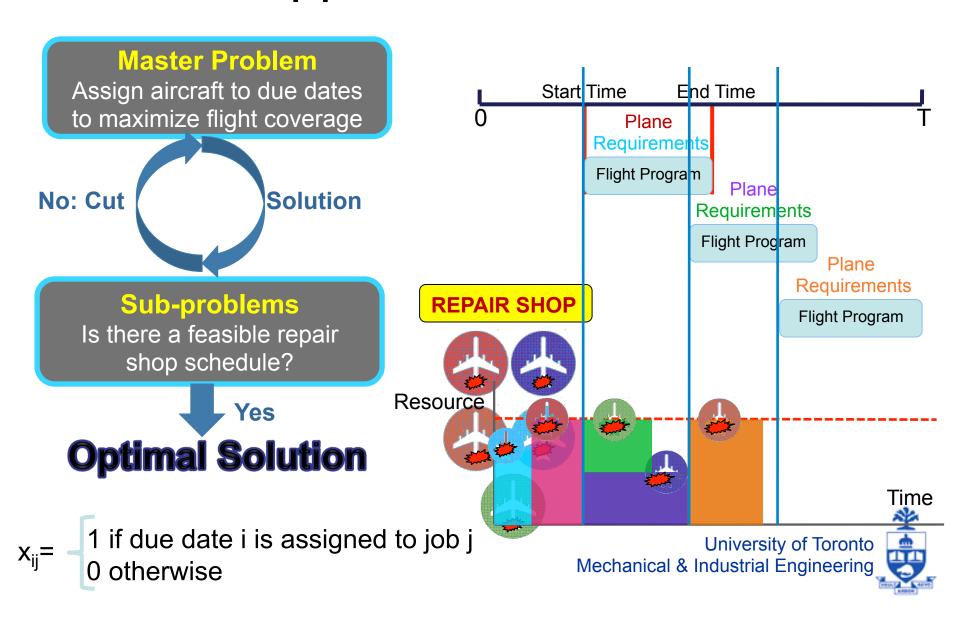
Aircraft Maintenance Scheduling Problem

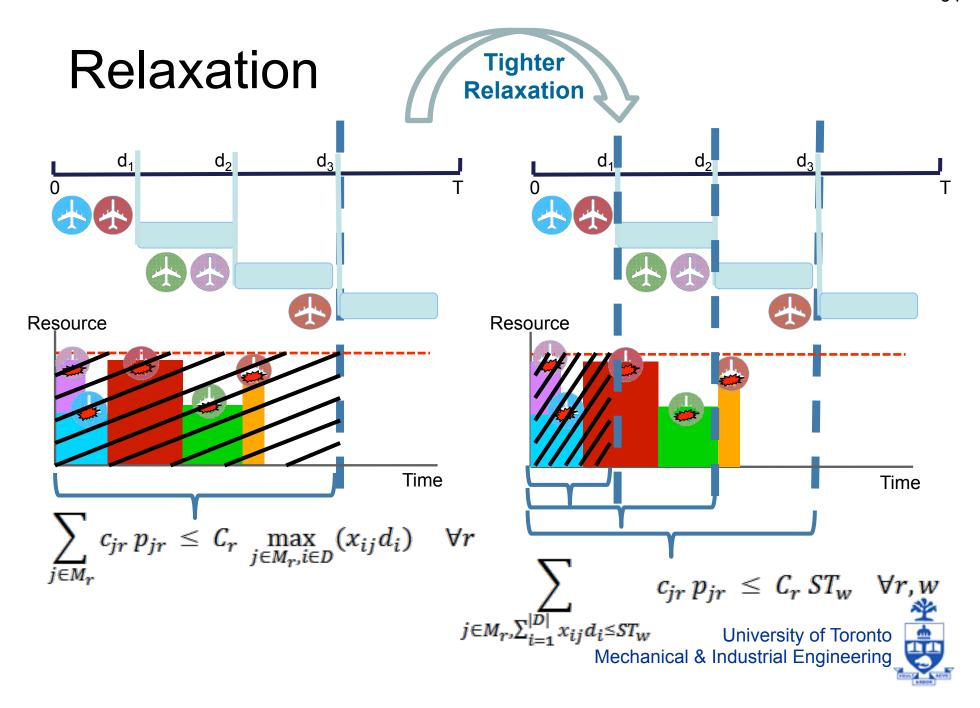


Scheduling in the Repair Shop

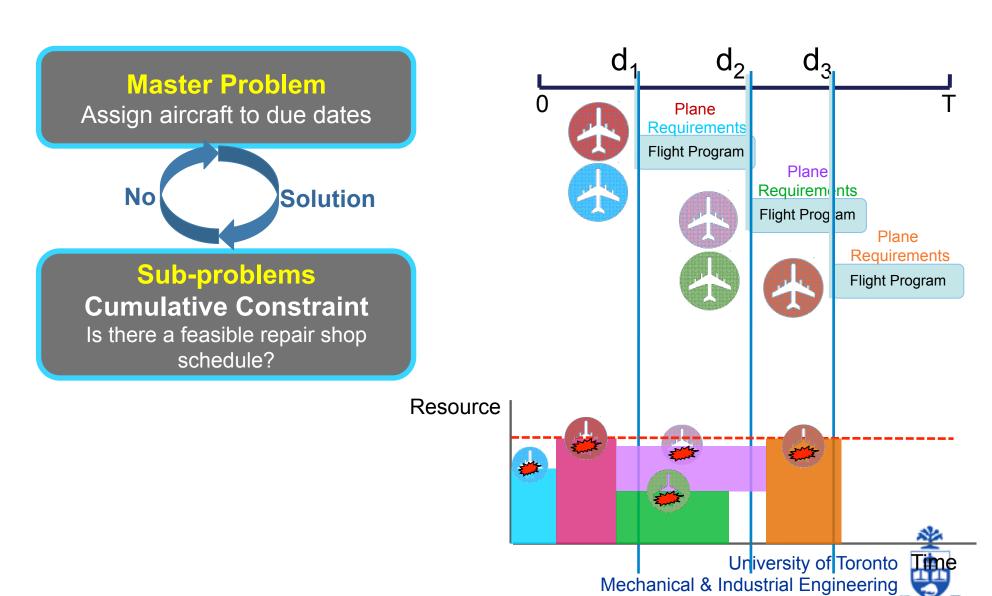


Solution Approach: LBBD



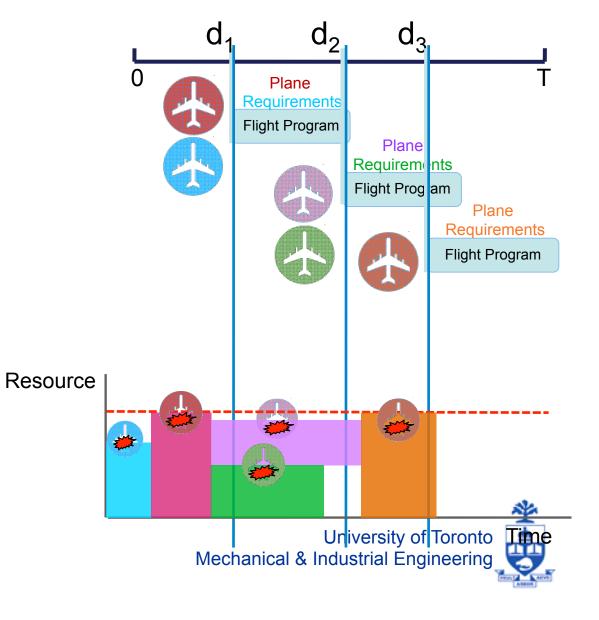


Cut



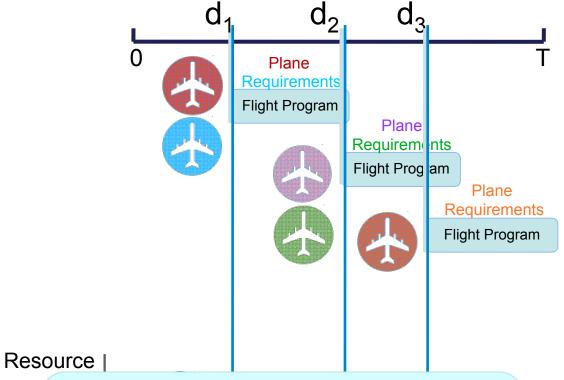
Cut

\mathbf{x}_{ij}	d ₁	d_2	d_3
	1	0	0
	1	0	0
+	0	1	0
	0	1	0
	0	0	1



Cut

x _{ij}	d ₁	d_2	d_3
	1	0	0
	1	0	0
4	0	1	0
4	0	1	0
	0	0	1

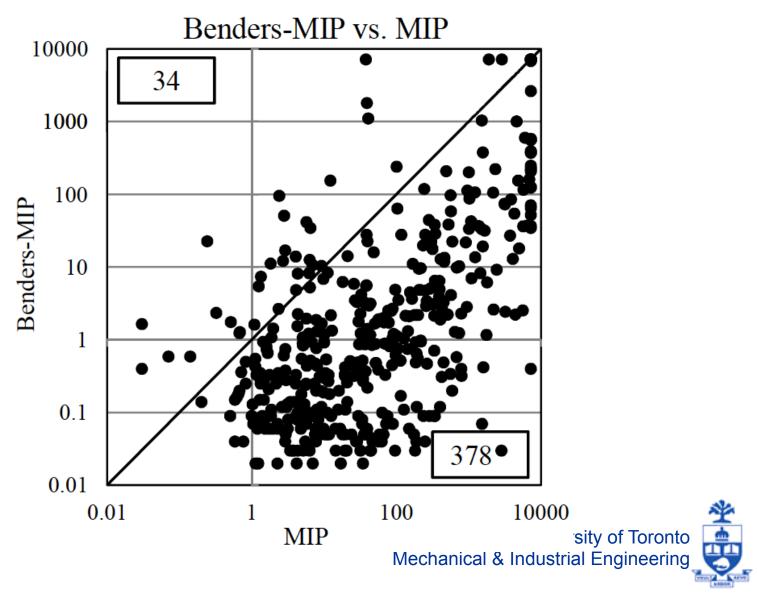


$$\sum_{x_{ij}} \leq (5-1)$$

$$\sum_{j \in M_r} \sum_{i \in I_{jh}^r} x_{ij} \le |M_r| - 1 \qquad \forall \, r$$

University of Toronto
Mechanical & Industrial Engineering

Computational Results



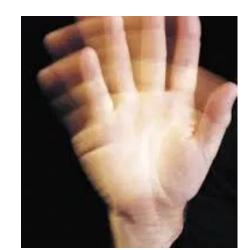
Computational Results

Method	Mean Time (s)	Mean Iterations (Median)	Mean % MP Time (Median)	Mean % SP Time (Median)	% Solved to Opt.
Benders-MIP-T	213	66.4 (8.0)	52% (54%)	48% (46%)	98%
Benders-MIP	227	64.7 (8.0)	62% (67%)	38% (33%)	98%
MIP	837	-	-	-	94%
Dispatch Rule	≈ 0	-	-	-	10%*
CP	6857	-	-	-	5%

- 420 problem instances
- 7200-second time limit
- IBM ILOG CPLEX & CPO 12.3

Decomposition-based CP-Hybrids

 Problems where CP brings something to the table, but doesn't have the whole answer

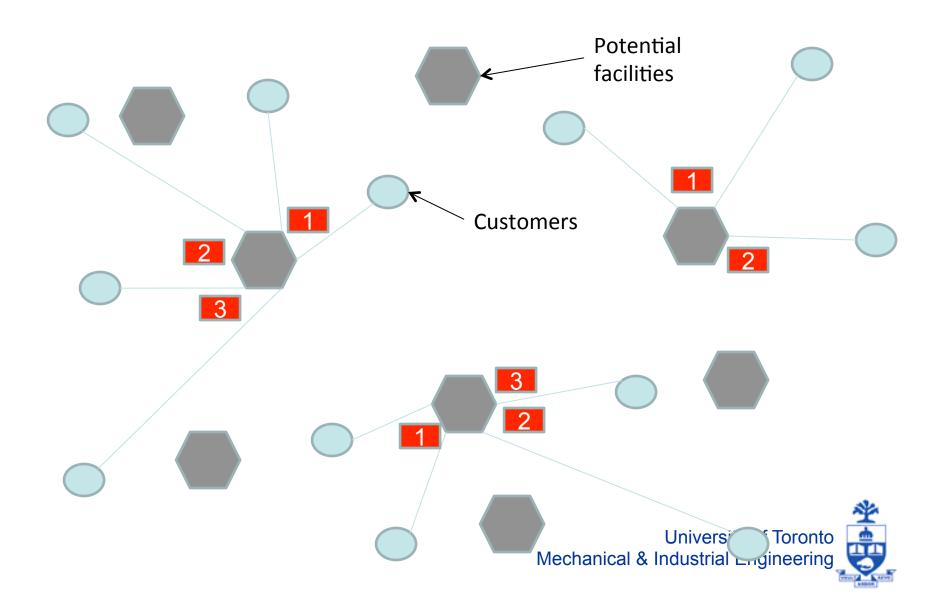


- where there is a combination of mostly global cost-based reasoning and mostly local feasibility problems
- where inference works well except for one problem characteristic
 - e.g., scheduling with alternatives

Due date assignment

A Location- Allocation Problem

A Location-Allocation Problem



Problem

- Choose facilities to open (p_j = 1), given fixed facility cost (f_i)
- Assign customers to facilities (x_{ij}) given service cost (c_{ii})
- Assign customers to trucks (truck_i) given cost per truck (u) and maximum travel distance for each truck (ℓ)

LBBD Model

Master Problem

Open facilities, assign customers, and assign # of trucks to each facility

Sub-problems

At each facility, pack trips onto allocated trucks

Master Problem

minimize
$$\sum_{j \in J} f_j p_j + \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} + u \sum_{j \in J} V_j$$

opening + service + truck costs

s.t.
$$\sum_{j \in J} x_{ij} = 1 \quad i \in I,$$

customers assign to one facility

$$\sum_{i\in I} d_i x_{ij} \leq b_j p_j \quad j\in J,$$

$$t_{ij}x_{ij} \leq l$$
 $i \in I$, $j \in J$,

$$V_j \ge \frac{\sum_{i \in I} t_{ij} x_{ij}}{l} \quad j \in J,$$

cuts,

$$x_{ij} \leq p_j$$
 $i \in I$, $j \in J$,

$$x_{ij}, p_j \in \{0, 1\}, V_j \in \{0, \dots, k\}$$

facility capacity

truck distance

sub-problem relaxation

only assign customer to open facilities

$$x_{ij}, p_j \in \{0,1\}, V_j \in \{0,\dots,\bar{k}\} \qquad i \in I, \ j \in J, \quad \text{Industrial Engineering}$$

Sub-problems

The CP formulation of the TASP is as follows:

min
$$V_j^{\text{BP}}$$

s.t. pack(load, truck, dist),
 $V_j \leq V_j^{\text{BP}} \leq V_j^{\text{FFD}}$,

Series of feasibility problems

Cut

Variable in master

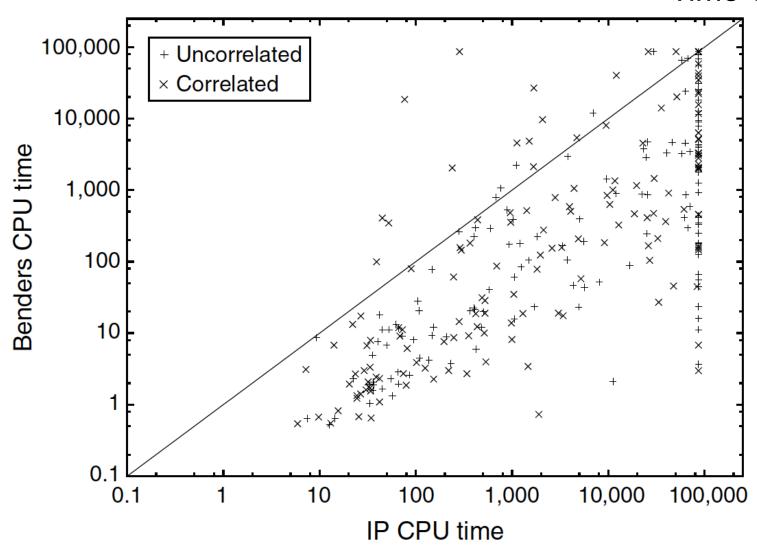
UB on truck reduction if one visit is removed

$$V_j \geq V_{jh}^* - \sum_{i \in I_{jh}} (1 - x_{ij}), \quad j \in J_h,$$
 Optimal value

Optimal value from TASP

Results

IBM CPLEX 11.0 IBM ILOG Solver 6.5 Time-out: 24 hours



Decomposition-based CP-Hybrids

 Problems where CP brings something to the table, but doesn't have the whole answer

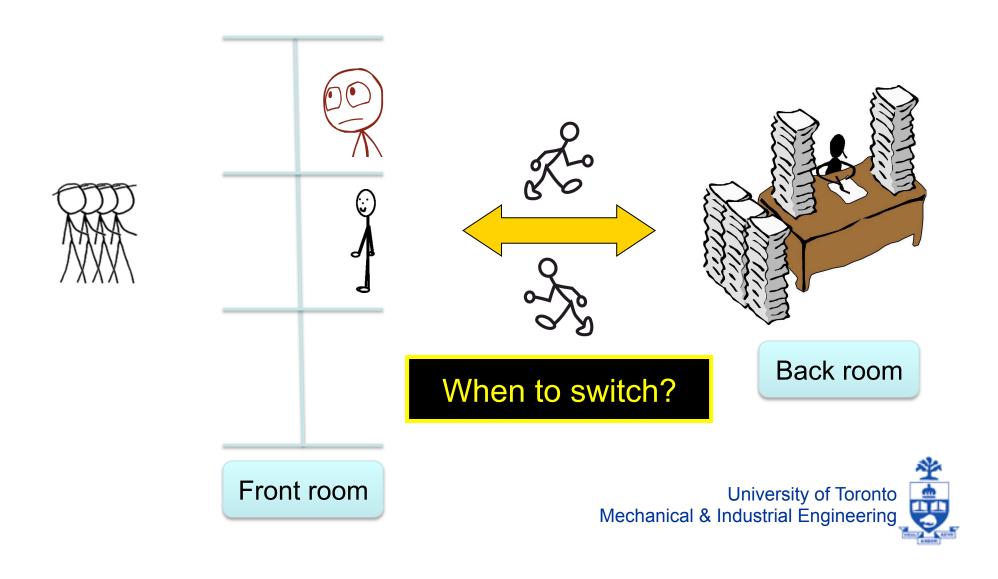
- where there is a combination of mostly global cost-based reasoning and mostly local feasibility problems
- where inference in problem characte

Global assignments, local packing

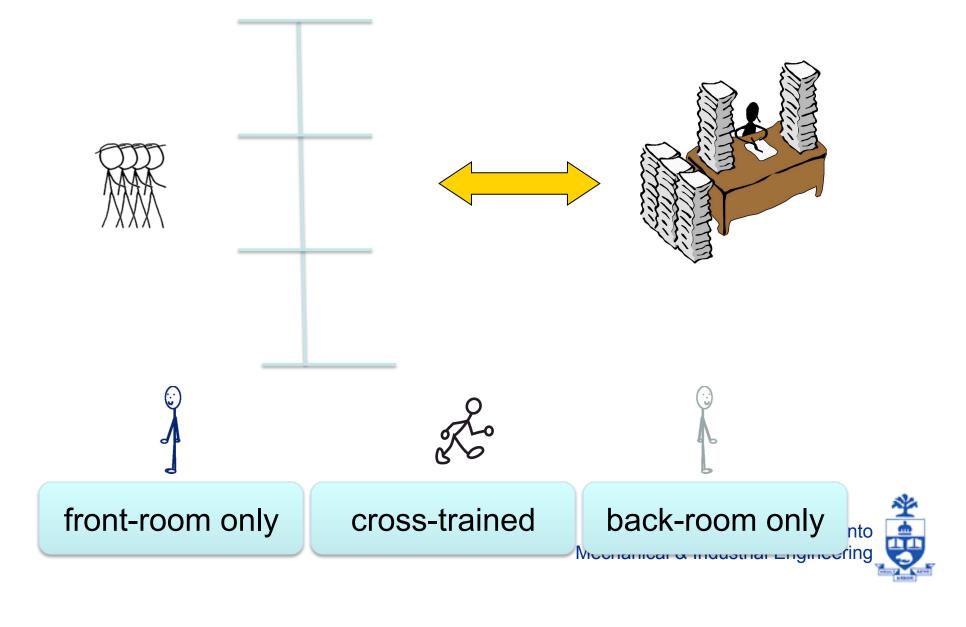
e.g., scheduling with alternatives

Dynamic Front-Room/Back-Room Service Scheduling

A Front-Room/Back-Room Problem



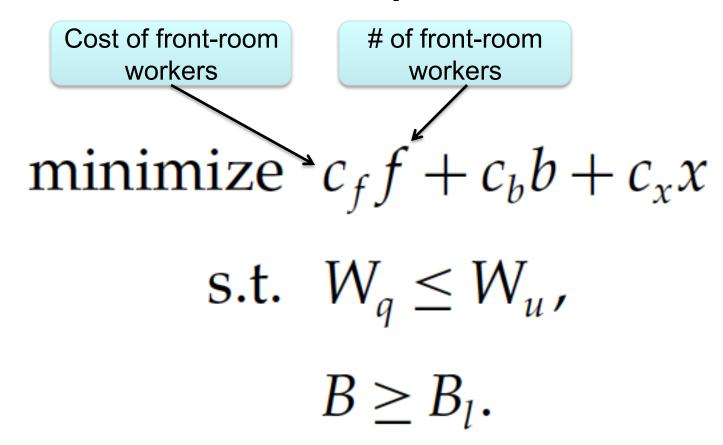
Problem Description



Problem Description

- Determine the number of front-room, backroom, and cross-trained workers to hire and a policy for switching workers that:
 - Minimizes total cost
 - Meets a bound on the maximum expected customer waiting time
 - Ensures all the work in the back-room is done

Problem Description



Cost Cases

- (1) $c_{\rm b} > c_{\rm x} > c_{\rm f}$,
- (2) $c_{\rm f} > c_{\rm x} > c_{\rm b}$,
- (3) $c_x \ge c_f + c_b$,
- (4) $c_x \leqslant c_f$ and $c_x \leqslant c_b$,
- (5) $c_x \leqslant c_b + c_f$, $c_x \geqslant c_f$ and $c_x \geqslant c_b$.

Cross-trained workers cost more than single skill workers but less than two of them

LBBD Model

Master Problem

Assign # of workers: f, x, b

Cut Solution

Sub-problem

Find a switching policy that meets bounds on front-room waiting and gets back-room work done

Mechanical & Industrial Engineering

Master Problem

$$minimize cost = c_f f + c_b b + c_x x$$

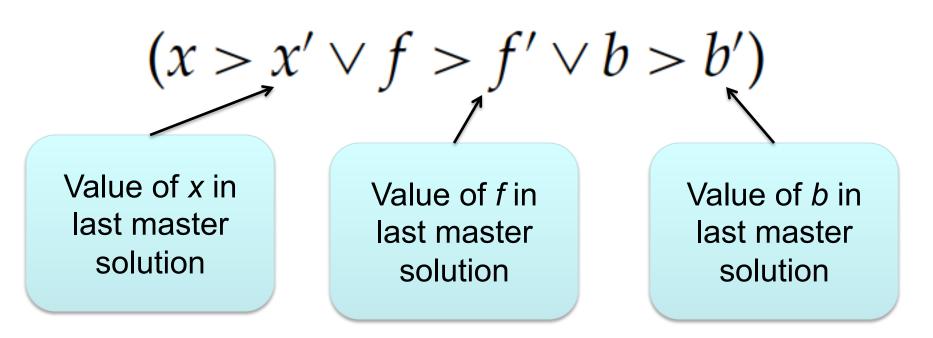
cuts

s.t.
$$f + x \ge F_{\text{total}}$$
, # front-room workers if $x = 0$ $b + x \ge B_{\text{total}}$, # back-room workers if $x = 0$ $0 \le f \le F_{\text{total}} - 1$, $0 \le b \le B_{\text{total}} - 1$, All these constraints are really a relaxation of the sub-problem $\max(c_f F_{\text{total}}, c_b B_{\text{total}})$

All these constraints are really a relaxation of the sub-problem

$$\leq \cot \leq c_f F_{\text{total}} + c_b B_{\text{total}},$$
ts

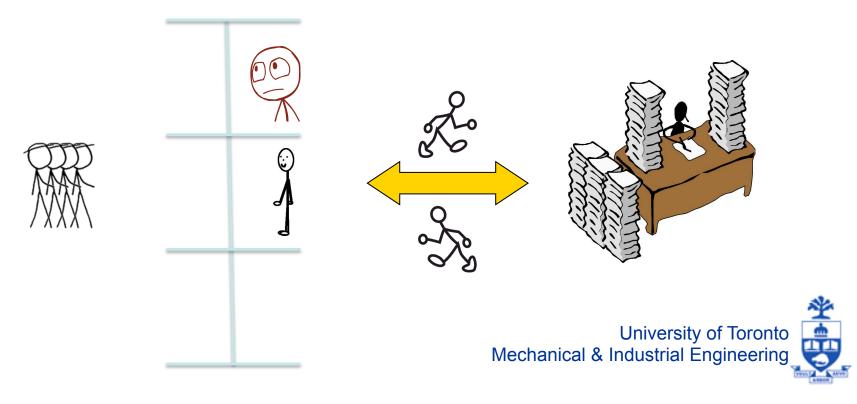
Cut



- If sub-problem is infeasible, we need at least one more worker
- Nogood cut

Sub-problem

- Find a policy for switching workers that:
 - Satisfies expected customer waiting time
 - Ensures all the work in the back-room is done



Problem Formulation

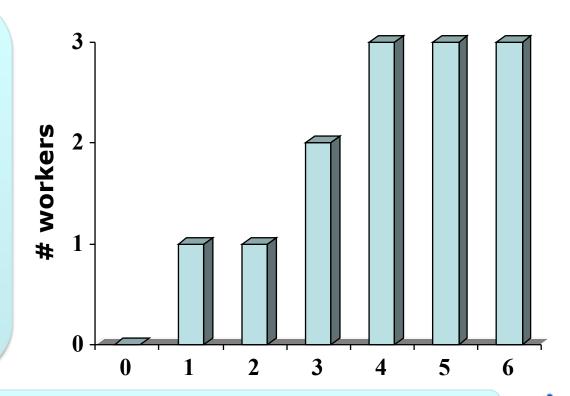
- Max # of customers S
- # of workers N
- Customers arrive according to Poisson process with rate
- Service times follow exponential distribution with rate µ

Switching Policy

 $(k_0, k_1, k_2, ..., k_N)$

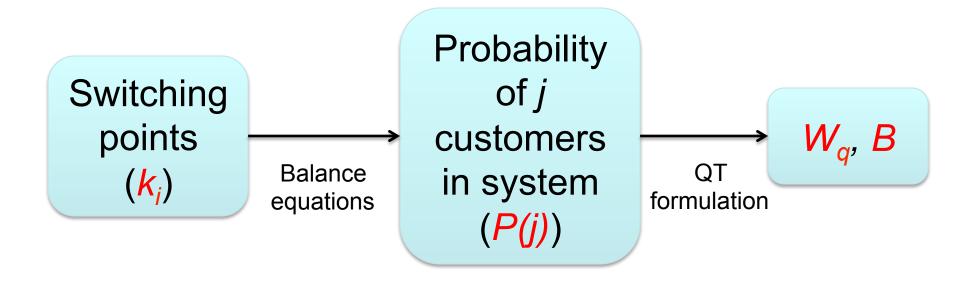
$$k_0$$
 k_1 k_2 k_3 (0, 2, 3, 6)

Should have *i+f*workers in
the front-room
when there are
between $k_{i-1}+1$ and k_i customers



Obs: 1) $k_{i-1} < k_i$ 2) lower k_i less waiting

What Are We Trying To Do?



 Construct a CP model with switching points (k_i's) as decision variables

Formally ...

$$W_q \leq W_u$$
,

$$B \geq B_l$$
.

$$\sum_{j=k_0}^{S} P(j) = 1$$

$$P(j)\lambda = P(j+1)i\mu$$

$$F = \sum_{i=1}^{N} \sum_{j=k_{i-1}+1}^{k_i} iP(j)$$

$$B = N - F$$

$$L = \sum_{j=k_0}^{S} jP(j)$$

$$W_q = \frac{L}{\lambda(1 - P(k_N))} - \frac{1}{\mu}$$

waiting time below bound

back-room work gets done

$$P(j)\lambda = P(j+1)i\mu$$
 $j = k_{i-1}, k_{i-1} + 1, \dots, k_i - 1$

balance equations

expected # of workers in front-room

expected # of workers in back-room

expected queue length

expected waiting time

Mechanical & Industrial Engineering

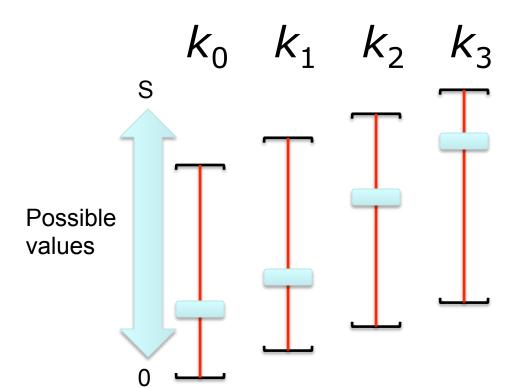
Sub-problem Results?

- 30 instances each for S = {10, 20, ..., 100}
- Other parameters randomly generated

If-Then	105
PSums	126

Problem Instances (out of 300) solved and proved optimal in 10 minutes.

Exploiting the Policy Structure

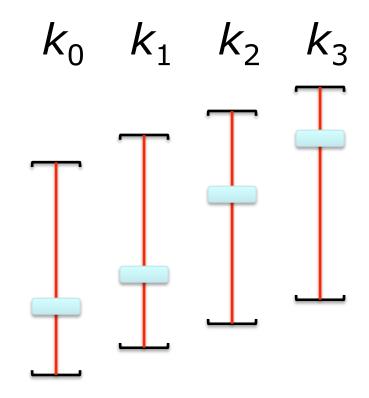


- When k_i's at UB,
 W_a maximized
- When k_i's at LB,
 W_q is minimized

Obs: 1) $k_{i-1} < k_i$ 2) lower k_i less waiting to

Exploiting the Policy Structure

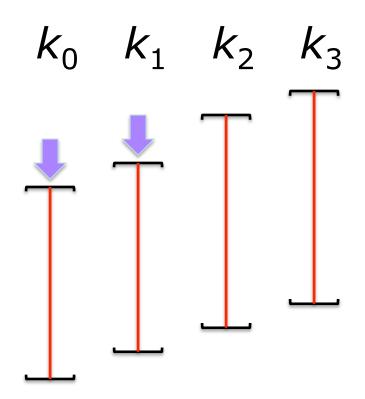
- Idea
 - Set k_i at its UB,
 set k_i, j ≠ i at LB
 - If W_q > W_u, remove UB from domain of k_i
- Symmetric reasoning for B



Obs: 1) $k_{i-1} < k_i$ 2) lower k_i less waiting

Exploiting the Policy Structure

- Idea
 - Set k_i at its UB,
 set k_i, j ≠ i at LB
 - If W_q > W_u, remove UB from domain of k_i
- Symmetric reasoning for B



"Shaving"

- Idea
 - Set an (integer) variable x at its LB (UB) and propagate
 - If infeasible, then the LB (UB) of x can be tightened
- Similar to Singleton Arc Consistency

Sub-problem Results with Shaving

No Shaving

Shaving before search and at each new incumbent

If-Then	105	234
PSums	126	238

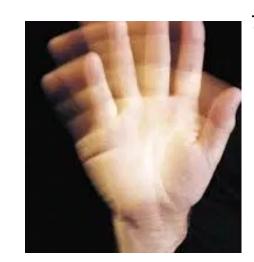
Problem Instances (out of 300) solved and proved optimal in 10 minutes.

Global Results

Statistic/	Max # number of customers (300 instances)										
value of S	10	20	30	40	50	60	70	80	90	100	
CPU time (seconds)	0.04	0.70	2.59	0.28	0.72	0.55	0.33	93.27	5.25	6.43	
No. of iterations	4.57	7.77	16.07	6.13	8.00	7.23	8.23	34.73	27.60	23.83	
Total no. of workers	4.07	6.33	9.17	4.80	5.40	5.60	5.27	15.33	8.83	8.93	
Difference compared to speconly (%	15.40	4.17	0.48	5.21	5.54	1.28	2.91	0.09	0	0	
Difference compared to crossonly (%		2.95	3.71	4.43	4.08	5.72	6.10	5.73	5.90	6.00)

Decomposition-based CP-Hybrids

 Problems where CP brings something to the table, but doesn't have the whole answer



- where there is a combination of mostly global cost-based reasoning and mostly local feasibility problems
- where inference works well except for one problem characteristic
 - e.g., scheduling with alternatives

MP defines # variables, not clear how to model sub-problem without CP

I confess...

- The master problem is not actually solved with MIP – we used CP
 - So this isn't really a MIP/CP hybrid, but it could be

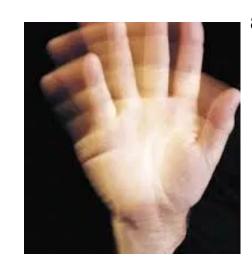
Outline

- Learn Constraint Programming in 15 minutes or less!
- Why Hybridize?
- Three Decomposition Examples
- Final Comments

Would MIP/CP LBBD work for my problem?

Decomposition-based CP-Hybrids

 Problems where CP brings something to the table, but doesn't have the whole answer



- where there is a combination of mostly global cost-based reasoning and mostly local feasibility problems
- where inference works well except for one problem characteristic
 - e.g., scheduling with alternatives

Problems with ...

- "Cascading" decisions
 - some sort of assignment that activates or constrains other variables
 - assign jobs to resources/due dates then schedule
 - customers to open facilities then pack
 - decide # workers and then find policy
- Nice linear sub-problem relaxations and cuts
- A sub-problem where inference can perform strongly

 University of Toronto Mechanical & Industrial Engineering

What about a CP master and a MIP sub-problem?

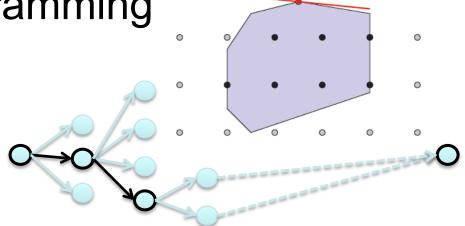
CP then MIP?

- There are examples in the literature but it is less developed
 - Relaxations and cuts are both better understood in MIP
 - Optimization master favours MIP and feasibility sub-problems favour CP (not uncommon)

When is he going to stop talking?

Post-Doctoral Position

- Al Planning and Mathematical Programming
 - PhD in OR or CS
 - Strong math and software skills
 - Publication record
 - Deadline: July 1, 2016



Hybrid CP/MIP and Benders Decomposition Methods

J. Christopher Beck
Department of Mechanical & Industrial Engineering
University of Toronto
Canada

jcb@mie.utoronto.ca

