Hybrid CP/MIP and Benders Decomposition Methods

J. Christopher Beck Department of Mechanical & Industrial Engineering University of Toronto Canada jcb@mie.utoronto.ca

CPAIOR 2016 Master Class May 29, 2016 University of Toronto Mechanical & Industrial Engineering

Outline

- Learn Constraint Programming in 15 minutes or less!
- Why Hybridize?
- Three Decomposition Examples
- Final Comments

Constraint Programming

- Optimization technology built around tree search and inference
 - branch-and-infer
- Like MIP but:

-No restriction on what a constraint is

 Just as MIP lives and dies depending on the relaxation, CP lives and dies depending on inference

Implications

"Global Constraints"

- There is no general relaxation
- So how do you avoid enumerating the whole space?
 - Develop constraints that represent a common combinatorial sub-structure
 - Develop constraint-specific inference techniques that "prune" the search tree

Inference: Domain Consistency (DC)

- Each value in the domain of each variable appears in at least one satisfying solution to the constraint
- Inference: remove values that do not meet the requirement

A constraint network is DC if all of its constraints are DC

Global Constraint

- An aggregate constraint over an arbitrary number of variables that:
 - 1. Represents some repeatedly occurring problem structure
 - 2. Allows for efficient inference that is stronger than can be achieved if a set of nonaggregated constraints is used to represent the structure

CP Model for a Nurse Scheduling Problem

min σ

s.t. spread($\{W_1, \dots, W_n\}, \mu, \sigma$), multiknapsack($\{N_1, \dots, N_m\}, \{A_1, \dots, A_m\}, \{W_1, \dots, W_n\}$), cardinality($\{N_1, \dots, N_m\}, \{1, \dots, n\}, \{1, \dots, MaxPatients\}$), pairwiseDisjoint($\{Z_1, \dots, Z_p\}$), $Z_k = \bigcup_{i \in P_k} N_i, \qquad k = 1, \dots, p$ $W_j \in \{min\{A_i\}, \dots, MaxAcuity\}, \qquad j = 1, \dots, n$ $N_i \in \{1, \dots, n\}. \qquad i = 1, \dots, m$

[Schaus et al. 2009] CPAIOR, 248-262, 2009.

DC for a Global Constraint

- Given: c (v₁,..., v_m)
- c is domain consistent iff for all variables v_i, for all values d_i ∈ D_i there exists a tuple of values

 $\begin{bmatrix} d_j \in D_j \end{bmatrix}, j \neq i$ such that $(v_i=d_i, [v_i=d_i]) \rightarrow T$

Need a "solution" to the constraint that supports $v_i=d_i$

All-Diff vs. Clique of \neq

All-different: Value Graph

• Example

$$-D_{1} = \{B,C,D,E\},\D_{2} = \{B,C\},\D_{3} = \{A,B,C,D\},\D_{4} = \{B,C\}- all-diff(v_{1},...,v_{4})$$

A variable assignment is part of a solution to an all-diff constraint iff its corresponding edge is in a maximal matching [Regin 1994]

So ...

- Over the past 25 years, CPers have developed a large number (400+) global constraints, accompanying inference algorithms, and complexity results
 - In practice, a smaller number of global constraints (~25) is commonly used
- Modeling is the "plugging together" of these global constraints

What is CP Good At?

- CP wins or loses on inference!
- Problems with

- interacting combinatorial structures that make it difficult to find a feasible solution
- strong back-propagation from the cost function
- Scheduling is one of the most successful applications of CP

Job Shop Scheduling (10 instances: 20X20)

Scheduling Inference (Edge-Finding)

Scheduling Inference (Edge-Finding)

CP Summary

• Very rich constraint language

- Modeling is plugging together useful sub-structure (i.e., global constraints)
- Branch-and-infer
 - Tree search
 - At each node, run the inference algorithms in each constraint to reduce the search space
 - Inference in one constraint "propagates" to others

Outline

- Learn Constraint Programming in 15 minutes or less!
- Why Hybridize?
- Three Decomposition Examples
- Final Comments

Why Hybridize?

This question is different (and orthogonal) to the question of "Why decompose?"

Decomposition-based CP-Hybrids

 Problems where CP brings something to the table, but doesn't have the whole answer

- where there is a combination of mostly global cost-based reasoning and mostly local feasibility problems
- where inference works well except for one problem characteristic
 - e.g., scheduling with alternatives

Problems with ...

"Cascading" decisions

- some sort of assignment that activates or constrains other variables
 - assign jobs to resources/due dates then schedule
 - assign customers to open facilities then pack
 - decide # workers and then find policy
- Nice linear sub-problem relaxations and cuts
- A sub-problem where inference can perform strongly University of Toronto Mechanical & Industrial Engineering

Resource Allocation & Scheduling

[Hooker 2005] Constraints, 10, 385-401, 2005.

Edge-Finding

Problem: a reasonable number of resource assignments must be made before the strong inference techniques have any impact

Three Examples

 Due date assignment and scheduling

Facility location-allocation

• Dynamic front-room/backroom service scheduling

University of Toronto Mechanical & Industrial Engineering

An Aircraft Maintenance Scheduling Problem

[Aramon Bajestani & B. 2013] JAIR, 47, 35-70, 2013.

Aircraft Maintenance Scheduling Problem

be ready?

Scheduling in the Repair Shop

32

Solution Approach: LBBD

Cut

Cut

x _{ij}	d ₁	d ₂	d ₃
	1	0	0
	1	0	0
	0	1	0
	0	1	0
	0	0	1

Cut

Computational Results

Computational Results

Method	Mean Time (s)	Mean Iterations (Median)	Mean % MP Time (Median)	Mean % SP Time (Median)	% Solved to Opt.
Benders-MIP-T	213	66.4 (8.0)	52% (54%)	48% (46%)	98%
Benders-MIP	227	64.7 (8.0)	62% (67%)	38% (33%)	98%
MIP	837	-	-	-	94%
Dispatch Rule	≈ 0	-	-	-	10%*
CP	6857	-	-	-	5%

- 420 problem instances
- 7200-second time limit
- IBM ILOG CPLEX & CPO 12.3

Decomposition-based CP-Hybrids

 Problems where CP brings something to the table, but doesn't have the whole answer

- where there is a combination of mostly global cost-based reasoning and mostly local feasibility problems
- where inference works well except for one problem characteristic
 - e.g., scheduling with alternatives

Due date assignment

A Location- Allocation Problem

[Fazel-Zarandi & B. 2013] /JOC, 24, 399-415, 2012.

A Location-Allocation Problem

Problem

- Choose facilities to open (p_j = 1), given fixed facility cost (f_j)
- Assign customers to facilities (x_{ij}) given service cost (c_{ij})
- Assign customers to trucks (truck_i) given cost per truck (u) and maximum travel distance for each truck (*l*)

LBBD Model

Master Problem

Open facilities, assign customers, and assign # of trucks to each facility

Sub-problems

At each facility, pack trips onto allocated trucks

Sub-problems

The CP formulation of the TASP is as follows:

 $\begin{array}{l} \min \ V_{j}^{\mathrm{BP}} \\ \mathrm{s.t.} \ \mathrm{pack}(\mathit{load}, \mathit{truck}, \mathit{dist}), \\ V_{j} \leq V_{j}^{\mathrm{BP}} \leq V_{j}^{\mathrm{FFD}}, \end{array}$

Series of feasibility problems

THE R. LANSING

IBM CPLEX 11.0 IBM ILOG Solver 6.5 Time-out: 24 hours

Decomposition-based CP-Hybrids

 Problems where CP brings something to the table, but doesn't have the whole answer

- where there is a combination of mostly global cost-based reasoning and mostly local feasibility problems
- where inference problem characte

Global assignments, local packing

• e.g., scheduling with alternatives

Dynamic Scheduling

[Terekhov, B., & Brown 2009] *IJOC*, **21**(4), 549-561, 2009.

A Front-Room/Back-Room Problem

Problem Description

Problem Description

- Determine the number of front-room, backroom, and cross-trained workers to hire and a policy for switching workers that:
 - Minimizes total cost
 - Meets a bound on the maximum expected customer waiting time
 - Ensures all the work in the back-room is done

Problem Description

[Terekhov, B., & Brown 2009] /JOC, 21(4), 549-561, 2009.

Cost Cases

(1)
$$c_b > c_x > c_f$$
,
(2) $c_f > c_x > c_b$,
(3) $c_x \ge c_f + c_b$,
(4) $c_x \le c_f$ and $c_x \le c_b$,
(5) $c_x \le c_b + c_f$, $c_x \ge c_f$ and $c_x \ge c_b$.

Cross-trained workers cost more than single skill workers but less than two of them

University of Toronto Mechanical & Industrial Engineering

[Terekhov & B. 2009] EJOR, 198, 223-231, 2009.

LBBD Model

Mechanical & Industrial Engineering

Master Problem minimize $\cos t = c_f f + c_b b + c_x x$ s.t. $f + x \ge F_{\text{total}}$, $b+x \geq B_{\text{total}}$, $0 \leq f \leq F_{\text{total}} - 1$, $0 \leq b \leq B_{\text{total}} - 1$, $1 \leq x \leq F_{\text{total}} + B_{\text{total}} - 1$, $f + b + x \ge \max(F_{\text{total}}, B_{\text{total}}),$ $\max(c_f F_{\text{total}}, c_b B_{\text{total}})$ $\leq \cot \leq c_f F_{\text{total}} + c_b B_{\text{total}},$ cuts

front-room workers if x = 0

back-room workers if x = 0

All these constraints are really a relaxation of the sub-problem

- If sub-problem is infeasible, we need at least one more worker
- Nogood cut

Sub-problem

- Find a policy for switching workers that:
 - Satisfies expected customer waiting time
 - Ensures all the work in the back-room is done

Problem Formulation

- Max # of customers S
- # of workers N
- Customers arrive according to Poisson process with rate
- Service times follow exponential distribution with rate µ

[Berman et al. 2005] EJOR, 167(2), 349-369, 2005.

[Berman et al. 2005] EJOR, 167(2), 349-369. 2005.

What Are We Trying To Do?

 Construct a CP model with switching points (k_i's) as decision variables

Sub-problem Results?

- 30 instances each for S = {10, 20, ..., 100}
- Other parameters randomly generated

If-Then	105			
PSums	126			

Problem Instances (out of 300) solved and proved optimal in 10 minutes.

[Terekhov & B. 2008] JAIR, 32, 123-167, 2008.

Exploiting the Policy Structure

- When k_i 's at UB, W_q maximized
- When k_i's at LB,
 W_q is minimized

Exploiting the Policy Structure

- Idea
 - Set k_i at its UB, set k_j, j ≠ i at LB
 - If W_q > W_u, remove UB
 from domain of k_i
- Symmetric reasoning for B

Exploiting the Policy Structure

- Idea
 - Set k_i at its UB, set k_j, j ≠ i at LB
 - If W_q > W_u, remove UB
 from domain of k_i
- Symmetric reasoning for B

69

- "Shaving"
- Idea
 - Set an (integer) variable x at its LB (UB) and propagate
 - If infeasible, then the LB (UB) of x can be tightened
- Similar to Singleton Arc Consistency

[Martin & Shmoys 1996] *IPCO*, 389-403, 1996.

Sub-problem Results with Shaving

Problem Instances (out of 300) solved and proved optimal in 10 minutes.

[Terekhov & B. 2008] JAIR, 32, 123-167, 2008.

Global Results

	Statistic/	Max # number of customers (300 instances)										
Means	value of <i>S</i>	10	20	30	40	50	60	70	80	90	100	
	CPU time (seconds)	0.04	0.70	2.59	0.28	0.72	0.55	0.33	93.27	5.25	6.43	
	No. of iterations	4.57	7.77	16.07	6.13	8.00	7.23	8.23	34.73	27.60	23.83	
	Total no. of workers	4.07	6.33	9.17	4.80	5.40	5.60	5.27	15.33	8.83	8.93	
	Difference compared to speconly (%)	15.40	4.17	0.48	5.21	5.54	1.28	2.91	0.09	0	0	
	Difference compared to crossonly (%)	2.11	2.95	3.71	4.43	4.08	5.72	6.10	5.73	5.90	6.00	

Decomposition-based CP-Hybrids

 Problems where CP brings something to the table, but doesn't have the whole answer

- where there is a combination of mostly global cost-based reasoning and mostly local feasibility problems
- where inference works well except for one problem characteristic
 - e.g., scheduling with alternatives

MP defines # variables, not clear how to model sub-problem without CP

- The master problem is not actually solved with MIP – we used CP
 - So this isn't really a MIP/CP hybrid, but it could be

Outline

- Learn Constraint Programming in 15 minutes or less!
- Why Hybridize?
- Three Decomposition Examples
- Final Comments

Decomposition-based CP-Hybrids

 Problems where CP brings something to the table, but doesn't have the whole answer

- where there is a combination of mostly global cost-based reasoning and mostly local feasibility problems
- where inference works well except for one problem characteristic
 - e.g., scheduling with alternatives

Problems with ...

- "Cascading" decisions
 - some sort of assignment that activates or constrains other variables
 - assign jobs to resources/due dates then schedule
 - customers to open facilities then pack
 - decide # workers and then find policy
- Nice linear sub-problem relaxations and cuts
- A sub-problem where inference can perform strongly University of Toronto Mechanical & Industrial Engineering

What about a CP master and a MIP sub-problem?

CP then MIP?

- There are examples in the literature but it is less developed
 - Relaxations and cuts are both better understood in MIP
 - Optimization master favours MIP and feasibility sub-problems favour CP (not uncommon)

Post-Doctoral Position

- AI Planning and Mathematical Programming
 - PhD in OR or CS
 - Strong math and software skills
 - Publication record
 - Deadline: July 1, 2016

Hybrid CP/MIP and Benders Decomposition Methods

J. Christopher Beck Department of Mechanical & Industrial Engineering University of Toronto Canada jcb@mie.utoronto.ca

CPAIOR 2016 Master Class May 29, 2016 University of Toronto Mechanical & Industrial Engineering