Introduction to Column Generation

CPAIOR Master Class – 2016 - Banff

Louis-Martin Rousseau

Canada Research Chair in Healthcare Analytics and Logistics

CIRRELT - POLYTECHNIQUE MTL

An example
Vehicle routing problem

Customers

- Customers
 - Demand constraints

- Customers
 - Demand constraints
- Vehicles
 - -Capacity constraints
 - Flow conservation constraints

- Customers
 - Demand constraints
- Vehicles
 - Capacity constraints
 - Flow conservation constraints
- Objective:
 - Find routes that minimize total distance

- Standard mip formulation:
 - Scaling issues
 - Symmetry
 - More complex constraints add even more complexity
 - Some constraints can lead to bad linear relaxations.

- Standard mip formulation:
 - Scaling issues
 - Symmetry
 - More complex constraints add even more complexity
 - Some constraints can lead to bad linear relaxations.
- Enumerate all possible routes
 - Much simpler formulation
 - Vehicle constraints are implicitly considered in route enumeration
 - Better Linear Relaxation

$$\sum p \in \Omega \uparrow \text{ } \text{ } \text{ } \text{ } c \downarrow p \text{ } \theta \downarrow p$$
 Minimize

subject to:
$$\sum p \in \Omega \uparrow \text{with } \theta \downarrow p = 1 \quad \forall i \in \mathbb{N}$$

$$\theta \downarrow p \in \{0,1\} \quad \forall p \in \Omega$$

Minimize
$$\sum p \in \Omega \uparrow \text{ if } route \ p \text{ is used } \text{ otherwise}$$
 Subject to:
$$\sum p \in \Omega \uparrow \text{ if } route \ p \text{ is used } \text{ otherwise}$$

Min
$$20 x l 1 + 20 x l 2 + 20 x l 3 + 20 x l 4 + 30 x l 5 + 30 x l 6 + 35 x l 7$$

A: $x l 1 + x l 5 = 1$

B: $+x l 2 + x l 3 + x l 6 + x l 7 = 1$

C: $+x l 3 + x l 6 + x l 7 = 1$

D: $+x l 4 + x l 6 + x l 7 = 1$

An intuitive view of

Solve linear programs with a lot of variables

- Solve linear programs with a lot of variables
 - Solve with a subset of variables

- Solve linear programs with a lot of variables
 - Solve with a subset of variables

- Solve linear programs with a lot of variables
 - Solve with a subset of variables

- Solve linear programs with a lot of variables
 - Solve with a subset of variables

- Solve linear programs with a lot of variables
 - Solve with a subset of variables

- Solve linear programs with a lot of variables
 - Solve with a subset of variables

- Solve linear programs with a lot of variables
 - Solve with a subset of variables

• When to use column generation?

• When to use column generation?

- When to use column generation?
- Works well generally on:
 - Vehicle routing
 - Airline Scheduling
 - Shift Scheduling
 - Jobshop Scheduling
 - - ...
- Multi-level of assembly

- When to use column generation?
- Works well generally on:
 - Vehicle routing
 - Airline Scheduling
 - Shift Scheduling
 - Jobshop Scheduling

- . . .

- Multi-level of assembly
- Worked the best when part of the problem has an underlying structure: Network, Hypergraph, knapsack, etc...

Master Probelm for the Vehicle routing problem

Min	20 <i>x↓</i> 1	+20 <i>x</i> √2	+20 <i>x</i> \$\dagger\$	+20 <i>x</i> ↓4	
A :	<i>x\</i> 1				= 1
B :		<i>x</i> .12			= 1
C :			x13		= 1
D:				<i>x</i> ↓4	= 1

	<i>x</i> . <i>l</i> 1	<i>x</i> .12	<i>x</i> .\$3	<i>x</i> ↓4	
Min	20	20	20	20	
A :	1				= 1
B :		1			= 1
C :			1		= 1
D:				1	= 1

	x l 1	<i>x</i> ↓2	<i>x</i> ↓3	<i>x1</i> 4		
Ĉ	0	0	0	0		$\pi \downarrow i$
A :	1				= 1	20
B :		1			= 1	20
C :			1		= 1	20
D:				1	= 1	20
	1	1	1	1	80	

An example (max 2 clients)

	<i>x</i> ↓1	<i>x</i> \$2	<i>x</i> ↓3	<i>x</i> ↓4		
ĉ	0	0	0	0		$\pi \downarrow i$
A :	1				= 1	20
B :		1			= 1	20
C :			1		= 1	20
D:				1	= 1	20
	1	1	1	1	80	

 $\pi \downarrow i$: Marginal price of visiting customer I

An example (max 2 clients)

	xl1	<i>x</i> \$2	<i>x</i> .\$43	<i>x1</i> 4		
ĉ	0	0	0	0		$\pi \downarrow i$
A :	1				= 1	20
B :		1			= 1	20
C :			1		= 1	20
D:				1	= 1	20
	1	1	1	1	80	

 $\pi \downarrow i$: Marginal price of visiting customer I

Can I find a route such that: $c < \sum 1 = \pi \sqrt{i}$

An example (max 2 clients)

	<i>x\</i> 1	<i>x</i> \$2	<i>x</i> .\$\dag{3}	<i>x1</i> 4		
ĉ	0	0	0	0		$\pi \downarrow i$
A :	1				= 1	20
B :		1			= 1	20
C :			1		= 1	20
<u>D:</u>				1	= 1	20
	1	1	1	1	80	

 $\pi \downarrow i$: Marginal price of visiting customer I

Can I find a route such that: $c-\sum 1 m\pi i < 0$

An example (max 2 clients)

	<i>x</i> \$1	<i>x</i> .12	<i>x</i> . <i>l</i> 3	<i>x</i> \$4		
Ĉ	0	0	0	0		$\pi \downarrow i$
A :	1				= 1	20
B :		1			= 1	20
C :			1		= 1	20
D:				1	= 1	20
	1	1	1	1	80	

 $\pi \downarrow i$: Marginal price of visiting customer I

Reduced cost!

Customer Depot

An example (max 2 clients)

	<i>x1</i> 1	<i>x</i> ↓2	<i>x</i> ↓3	<i>x</i> .14		
ĉ	0	0	0	0		$\pi \downarrow i$
A :	1				= 1	20
B :		1			= 1	20
C :			1		= 1	20
<u>D:</u>				1	= 1	20
	1	1	1	1	80	

 $\pi \downarrow i$: Marginal price of visiting customer I

Can I find a route such that: $c-\sum 1 = \pi i$

An example (max 2 clients)

	<i>x\</i> 1	<i>x</i> \$2	<i>x</i> .\$\dag{3}	<i>x</i> ↓4	<i>x↓</i> 5		
Ĉ	0	0	0	0	-10		$\pi \downarrow i$
A :	1				1	= 1	20
B :		1			1	= 1	20
C :			1			= 1	20
D:				1		= 1	20
	1	1	1	1		80	

 $\pi \downarrow i$: Marginal price of visiting customer I

Can I find a route such that: $c-\sum 1 = \pi i$

An example (max 2 clients)

	<i>x\</i> 1	<i>x</i> ↓2	<i>x</i> ↓3	<i>x1</i> 4	<i>x</i> \$15		
Ĉ	10	0	0	0	0		$\pi \downarrow i$
A :	1				1	= 1	10
B :		1			1	= 1	20
C :			1			= 1	20
D:				1	-	= 1	20
		0	1	1	1	70	

 $\pi \downarrow i$: Marginal price of visiting customer I

Can I find a route such that: $c-\sum 1 = \pi i$

Sub Probelm for the Vehicle routing problem

General Subproblem

- Implicit representation of all variables
 - Every possible solution to the subproblem is a variable

Optimization objective:

Min $\hat{c}=c-\sum i \uparrow \text{ as it } \{\blacksquare 1,0, \blacksquare \text{ if customer i is visited@otherwill}\}$

General Subproblem

- Implicit representation of all variables
 - Every possible solution to the subproblem is a variable

Optimization objective:

Min $\hat{c}=c-\sum i\uparrow \text{ as interval}$ **Interval** $c=\sum x\uparrow \text{ as } c\downarrow x$ x

Subproblem

- Implicit representation of all variables
 - Every possible solution to the subproblem is a variable
- Optimization objective:

find variable with (the most) negative reduced cost

Min $\hat{c} = \sum x \uparrow = c \downarrow x x - \sum i \not = i \uparrow = i \downarrow = i \downarrow$

Subproblem

- Implicit representation of all variables
 - Every possible solution to the subproblem is a variable
- Optimization objective:

> find variable with (the most) negative reduced cost

Min $\hat{c} = \sum x \uparrow = c \downarrow x x - \sum i \uparrow = \pi \downarrow i \ a \downarrow i$ if customer i is visited@ot

Subject to: Capacity constraints

Flow conservation constraints

Shortest-path problem with resource constraints:

Dynamic programming

Resources Constraint SPP

- Resource r = 1,...,R
- Resource consumption $t_{ij}^r > 0$ on each arc.
- Resources window[a^r_i,b^r_i] at each node
 - Resources level cannot go above b^r, when node v_i is reached
 - If t_{ij}^r is below a_i^r when node path reaches v_i then is it set to a_i^r

Resources Constraint SPP - DP

- Dynamic Programming Algorithm
 - -L_i: list of labels associated with node v_i
 - -label $I = (c,T^1,...,T^R)$ where
 - c is the cost of the label
 - T^r is the consumption level of resource r
 - a label represents a partial path from v₀ to v_i
 - v(l) is the node which to which I is associated

Resources Constraint SPP - DP

- Extending a label $I = (c, T_i^1, ..., T_i^R)$ from v_i to v_j
 - Create a label (c + c_{ij} , $T^I + t^I_{ij}$,..., $T^R + t^R_{ij}$)
 - Making sure we respect $[a_i^l, b_i^l], ..., [a_i^R, b_i^R]$
 - Insert the label in the list of labels associated with v_i
 - Apply **Dominance Rules**
 - Without such rules, the algorithm would enumerates all possible paths
 - Resources constraints make sure the algorithm terminates

Resources Constraint SPP - DP

• Dominance Rules: I₁ dominates I₂ iff:

$$-c(l_1) \le c(l_2)$$

- Every feasible **future** extension of l₂ will be feasible for l₁
 - Most often we check that $T^r(I_1) \le T^r(I_2)$ for all r

Dominance: an example

Subproblem – Constraint Programming

"Arc Flow" model

Objectives:

- Minimize: \sum_{i} (ReducedCost(i, S_{i}))

Variables:

 $-S_i \in N$

 $-V_i \in \{False, True\}$

 $-I_i \in [0..Capacity]$

Successor of node i

Node i visited by current path

Truck load after visit of node i

Constraints:

 $-S_i = i \rightarrow V_i = False$

AllDiff(S)

– NoSubTour(S)

 $-S_i = j \rightarrow I_i + D_j = I_j$

S-V Coherence constraints

Conservation of flow

SubTour elimination constraint

Capacity constraints

+ Redundant Constraints from work on TSP(TW)

Subproblem – Constraint Programming

"Position" model

Objectives:

- Minimize: \sum_{k} (ReducedCost(P_k , P_{k+1}))

Variables:

 $-P_k \in N$

 $-L_k \in [0..Capacity]$

Node visited a position k

Truck load after visiting position k

Constraints:

– AllDiff(P)

 $- L_{k+1} = L_k + D_{Pk}$

 $-P_k = depot \rightarrow P_{k+1} = depot$

Elementarity of the path

Capacity constraints

Padding at the end of path

Obtaining integer solutions

- Column generation + MIP: Branch-and-price
 - How to obtain integer solutions?

- Column generation + MIP: Branch-and-price
 - How to obtain integer solutions?
 - Branch-and-bound -> solve LP relaxation at each node
 - Branch-and-price -> column generation to solve LP relaxation at each node

- Vehicle routing problem
 - Max 2 customers
 - Cost of all arc: I

- Vehicle routing problem
 - Max 2 customers
 - Cost of all arc: I

	$x \downarrow$	$x \downarrow$	xl	
	1	2	3	
Min	3	3	3	
A:	1	1		= 1
В:	1		1	= 1
C :		1	1	= 1
OptSol:	0.5	0.5	0.5	4.5

- Vehicle routing problem
 - Max 2 customers
 - Cost of all arc: I

	x l	$x \downarrow$	xl	
	1	2	3	
Min	3	3	3	
A:	1	1		= 1
B:	1		1	= 1
C :		1	1	= 1
OptSol:	0.5	0.5	0.5	4.5

- Vehicle routing problem
 - Max 2 customers
 - Cost of all arc: I

		$x \downarrow$	$x \downarrow$	xl	
_		1	2	3	
	Min	3	3	3	
•	A :	1	1		= 1
	B :	1		1	= 1
	C :		1	1	= 1
	OptSol:	0.5	0.5	0.5	4.5

OptSol: 0.5 0.5 0.5 4.5

	x l	$x \downarrow$	xl	
	1	2	3	
Min	3	3	3	
A :	1	1		= 1
B:			1	= 1
C :		1	1	= 1

- Vehicle routing problem
 - Max 2 customers
 - Cost of all arc: I

0.5		xl	xl	xl	
		1	2	3	
	Min	3	3	3	
	A :	1	1		= 1
	B :	1		1	= 1
	C :		1	1	= 1
O	OptSol:	0.5	0.5	0.5	4.5

	$x \downarrow$	
	4	
	2	
A :	1	11
B :		4
C·		

	$x \downarrow$	$x \downarrow$	$x \downarrow$	
	1	2	3	
Min	3	3	3	
A:	1	1		= 1
_				

C :

	$x \downarrow$	$x \downarrow$	xl	
	1	2	3	
Min	3	3	3	
A:	1	1		= 1
B :			1	= 1

- Vehicle routing problem
 - Max 2 customers
 - Cost of all arc: I

$x \downarrow$	
4 2	0
A: 1	
B: *	

0	
0	·
\cup	

		$x \downarrow$	$x \downarrow$	$x \downarrow$	
_		1	2	3	
	Min	3	3	3	
	A :	1	1		= 1
	В:	1		1	= 1
	C :		1	1	= 1
	OptSol:	0.5	0.5	0.5	4.5

	$x \downarrow$	$x \downarrow$	$x \downarrow$	xl	
	1	2	3	4	
Min	3	3	3	2	
A :	1	1		1	= 1
B :			1		= 1
C ·		1	1		_ 1

C :

- Vehicle routing problem
 - Max 2 customers
 - Cost of all arc: I

	хĮ	хĮ	x l	
	1	2	3	
Min	3	3	3	
A:	1	1		= 1
B :	1		1	= 1
C :		1	1	= 1
OptSol:	0.5	0.5	0.5	4.5

		$x \downarrow$	$x \downarrow$	x l	$x \downarrow$	
		1	2	3	4	
M	in	3	3	3	2	
P	١:	1	1		1	= 1
E	3 :			1		= 1
	<u>.</u>		1	1		= 1

	<i>x</i> ↓ 1	$x \downarrow$ 2	<i>x↓</i> 3	
Min	3	3	3	
A:	1	1		= 1
B :	1		1	= 1
C :			1	= 1

- Vehicle routing problem
 - Max 2 customers
 - Cost of all arc: I

	$x \downarrow$	$x \downarrow$	xl	
	1	2	3	
Min	3	3	3	
A :	1	1		= 1
B:	1		1	= 1
C:		1	1	= 1
OntSol	0.5	0.5	٥ ـ ٦	15

	xI	$x \downarrow$	xI	$x \downarrow$	
	1	2	3	4	
Min	3	3	3	2	
A :	1	1		1	= 1
B :			1		= 1
.		4	4		_ 1

	$x \downarrow$	$x \downarrow$	$x \downarrow$	xl	
	1	2	3	5	
Min	3	3	3	2	
A :	1	1			= 1
B :	1		1		= 1
C :			1	1	= 1

- Vehicle routing problem
 - Max 2 customers
 - Cost of all arc: I

Why branch on arc-flow variables?

	$x \downarrow$	$x \downarrow$	$x \downarrow$	x l	
	1	2	3	4	
Min	3	3	3	2	
A :	1	1		1	= 1
В:			1		= 1
C·		1	1		= 1

	$x \downarrow$	$x \downarrow$	$x \downarrow$	xl	
	1	2	3	5	
Min	3	3	3	2	
A :	1	1			= 1
B:	1		1		= 1
C :			1	1	= 1

- Branching possibilities
 - Branch on master variables

- Branching possibilities
 - Branch on master variables

- Branching possibilities
 - Branch on master variables... NO!

- Branching possibilities
 - Branch on master variables... NO!
 - Branch on subproblem variables

- Branching possibilities
 - Branch on master variables... NO!
 - Branch on subproblem variables

- Branching possibilities
 - Branch on master variables... NO!
 - Branch on subproblem variables

- Branching possibilities
 - Branch on master variables... NO!
 - Branch on subproblem variables
 - Branch on the master problem constraints
 - Add constraints c-> $\pi c \downarrow$ must be added to the subproblems
 - Example: Branch on the total number of vehicle used

Branch-and-price

- Branching possibilities
 - Branch on master variables... NO!
 - Branch on subproblem variables
 - Branch on the master problem constraint
 - Add constraints -> $\pi \downarrow i$ to add to the subproblems
 - Example: Branch on the total number of vehicle used

Best branching for shift scheduling problem

Branch-and-price

- Branching possibilities
 - Branch on master variables... NO!
 - Branch on subproblem variables
 - Branch on the master problem constraints
 - Cuts
 - Again dual variable $\pi \downarrow$ must be added to add to the subproblems

Applied column generation

Main Challenges

- Evolution of costs
 - Long convergence time

- Evolution of costs
 - Long convergence time
- Speed-up techniques
 - Spend more time to generate new columns

- Evolution of costs
 - Long convergence time
- Speed-up techniques
 - Spend more time to generate new columns

- Evolution of costs
 - Long convergence time
- Speed-up techniques
 - Spend more time to generate new columns

- Evolution of costs
 - Long convergence time
- Speed-up techniques
 - Spend more time to generate new columns
 - Delete variables in RMP

- Evolution of costs
 - Long convergence time
- Speed-up techniques
 - Spend more time to generate new columns
 - Delete variables in RMP

- Evolution of costs
 - Long convergence time
- Speed-up techniques
 - Spend more time to generate new columns
 - Delete variables in RMP

- Evolution of costs
 - Long convergence time
- Speed-up techniques
 - Spend more time to gener new columns
 - Delete variables in RMP
 - Gradually increase computation effort

- Evolution of costs
 - Long convergence time
- Speed-up techniques
 - Spend more time to generate new columns
 - Delete variables in RMP
 - Gradually increase computation effort
 - Heuristic pricing

- Evolution of costs
 - Long convergence time
- Speed-up techniques
 - Spend more time to generate new columns
 - Delete variables in RMP
 - Gradually increase computation effort
 - Heuristic pricing
 - Stabilization

- Evolution of costs
 - Long convergence time
- Speed-up techniques
 - Spend more time to generate new columns
 - Delete variables in RMP
 - Gradually increase computation effort
 - Heuristic pricing
 - Stabilization

- Stabilization
 - Duals are extreme points
 - Master problem is degenerated
 - Tail-off effect is due to difficulty finding the right dual vector

A quick look at

Stabilization issues

	$x \downarrow$	$x \downarrow$	$x \downarrow$	$x \downarrow$	xl		
	1	2	3	4	5		
Ĉ	10	0	0	0	0		$\pi \downarrow i$
A:	1				1	= 1	10
B :		1			1	= 1	20
C :			1			= 1	20
D:				1	_	= 1	20
		0	1	1	1	70	

	x l	x l	$x \downarrow$	$x \downarrow$	$x \downarrow$		
	1	2	3	4	5		
Ĉ	10	0	0	0	0		$\pi \downarrow i$
A:	1				1	= 1	10
B :		1			1	= 1	20
C :			1			= 1	20
D:				1	_	= 1	20
		0	1	1	1	70	

	$x \downarrow$	$x \downarrow$	$x \downarrow$	$x \downarrow$	x l	x l		
	1	2	3	4	5	6		
Ĉ	10	0	0	0	0	-10		$\pi \downarrow i$
A:	1				1		= 1	10
B :		1			1		= 1	20
C :			1			1	= 1	20
D:				1		1	= 1	20
		0	1	1	1		70	

	$x \downarrow$							
	1	2	3	4	5	6		
Ĉ	10	0	0	10	0	0		$\pi \downarrow i$
A :	1				1		= 1	10
В:		1			1		= 1	20
C :			1			1	= 1	20
D:				1		1	= 1	10
		0	0		1	1	60	

	$x \downarrow$	x l						
	1	2	3	4	5	6		
Ĉ	10	0	0	10	0	0		$\pi \downarrow i$
A:	1				1		= 1	10
B :		1			1		= 1	20
C :			1			1	= 1	20
D:				1		1	= 1	10
		0	0		1	1	60	

	$x \downarrow$	x l							
	1	2	3	4	5	6	7		
Ĉ	10	0	0	10	0	0	-5		$\pi \downarrow i$
A:	1				1			= 1	10
B :		1			1		1	= 1	20
C :			1			1	1	= 1	20
D:				1		1		= 1	10
		0	0		1	1		60	

	$x \downarrow$	x l							
	1	2	3	4	5	6	7		
Ĉ	10	0	10	0	0	0	5		$\pi \downarrow i$
A:	1				1			= 1	10
B :		1			1		1	= 1	20
C :			1			1	1	= 1	10
D:				1		1		= 1	20
		0		0	1	1		60	

- Stabilization!
 - -What to do?
 - Popular technique
 - Box penalization

- Stabilization!
 - -What to do?
 - Popular technique
 - Box penalization

- Stabilization!
 - -What to do?
 - Popular technique
 - Box penalization

- Stabilization!
 - -What to do?
 - Popular technique
 - Box penalization

- Stabilization!
 - -What to do?
 - Popular technique
 - Box penalization
 - Interior point stabilization

- Stabilization!
 - What to do?
 - Popular technique
 - Box penalization
 - Interior point stabilization
 - Adding a variable to the primal is equivalent to adding a cut to the dual

- Stabilization!
 - What to do?
 - Popular technique
 - Box penalization
 - Interior point stabilization
 - Find multiple dual optimal extreme points

- Stabilization!
 - What to do?
 - Popular technique
 - Box penalization
 - Interior point stabilization
 - Find multiple dual optimal extreme points
 - -Do a linear combination

Average time	Average nb Iterations
384.4 s	72.6
389.1 s	61.0
277.9 s	37.1
	384.4 s 389.1 s

- Stabilization!
 - What to do?
 - Popular technique
 - Box penalization
 - Interior point stabilization
 - Find multiple dual optimal extreme points
 - Do a linear combination
 - Simple idea: barrier algorithm without crossover

Optimal dual space

Any Questions?

Thank you!