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 Customers
— Demand constraints
* Vehicles

— Capacity constraints 14
— Flow conservation constraints

* Objective:
— Find routes that minimize total distance © P
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Vehicle routing problem

* Standard mip formulation:
— Scaling issues
— Symmetry

— More complex constraints add even
more complexity

— Some constraints can lead to bad
linear relaxations.
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Vehicle routing problem

* Standard mip formulation:
— Scaling issues
— Symmetry

— More complex constraints add even
more complexity

— Some constraints can lead to bad
linear relaxations.

* Enumerate all possible routes
— Much simpler formulation

— Vehicle constraints are implicitly
considered in route enumeration

— Better Linear Relaxation

O Customer
B Depot
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* Enumerate all possible routes

Minimize
subject to: ViEN
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* Enumerate all possible routes

Minimize

subject to:
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* Enumerate all possible routes

Cost of route p

Minimize

subject to:

dlpef0,1}  vpeQ

Possibly huge number of routes \

={.0, N J{ routeplis usedk?otllerwise

A very small number of routes
are interesting




Vehicle routing problem © C%T

10 10
An example (max 2 clients) A o D,
Q© Customer
B Depot

Min 2041 +20xd2 42013 +20xd4  +30x5 +30xd6 +35 U7

A xll +x45 =1
B: +xd2 + 145 +xl7 = 1
C: +x43 +xJ6 +xd7 = 1
D : +xl4 +xJ6 =1
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» When to use column generation?

Assemble routes

Route for
vehicle 1

Route for
vehicle 2

Route for
vehicle 3
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* When to use column generation!?
* Works well generally on:

— Vehicle routing

— Airline Scheduling

— Shift Scheduling
— Jobshop Scheduling

* Multi-level of assembly
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* When to use column generation!?
* Works well generally on:

— Vehicle routing

— Airline Scheduling —
— Shift Scheduling _
— Jobshop Scheduling

* Multi-level of assembly

* Worked the best when part of the problem has an
underlying structure: Network, Hypergraph, knapsack,
etc...
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‘ Initial set of columns ‘

1

>| Solve Restricted master problem

177l 4

‘ Solve subproblem ‘

Add
columns
to RMP

Yes

Negative reduced No ] .
cost columns? ’l Optimality! ‘




Master Probelm for the
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« An example (max 2 clients)

Min
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« An example (max 2 clients)

xdl xd2 xd3 x4
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« An example (max 2 clients)
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« An example (max 2 clients)
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« An example (max 2 clients)

é 0 0 0 0 -10 i

A 1 1 =1 20

B: 1 1 =1 20

C: 1 =1 20

D: =1 20
1 1 1 1 80 O Customer

B Depot

Tl Marginal price of visiting C—Zfﬂ'll <0
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« An example (max 2 clients)

¢ 1o ° 0o ° o0 e

A: 1 1 =1 10

B: 1 =1 20

C: 1 =1 20

D: =1 20
0 1 1 1 70 O Customer

B Depot

) Can | find a route such that:
i Marginal price of visiting C—Zfﬂ'll <0
customer /
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* Implicit representation of all variables

— Every possible solution to the subproblem is a variable

» Optimization objective:

Subiject to:

-> find variable with (the most) negative reduced cost

Capacity constraints
Flow conservation constraints

Shortest-path problem with
resource constraints:
Dynamic programming
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e Resourcer=1,...,R

* Resource consumption t"; > 0 on each arc.

* Resources windowl[a",b"] at each node
—Resources level cannot go above b", when node v, is reached
—If t";is below a";, when node path reaches v, then is it set to a",

47
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* Dynamic Programming Algorithm
—L, : list of labels associated with node v,

—label 1= (cT',..., TR) where
* cis the cost of the label
* T" is the consumption level of resource r
* a label represents a partial path from v, to v,
* v(l) is the node which to which | is associated

48



Resources Constraint SPP - DP @
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* Extending a label | = (¢,T";..., TX) from v, to v,

—Create a label (c + ¢, T'+t!,..., TR +t}))

° Making sure we respect [a';,b'],..., [a¥,bR]

ij

—Insert the label in the list of labels associated with V,

— Apply Dominance Rules

* Without such rules, the algorithm would enumerates all possible paths

— Resources constraints make sure the algorithm terminates

49
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* Dominance Rules: |, dominates |, iff :

—c(l)) <= c(ly)

— Every feasible future extension of |, will be feasible for |,
* Most often we check that T"(l,) <= T*(l,) for all r

50



Dominance: an example C,‘,;},‘?u

[3& (10,14]

533 %[08]%0‘{

(5,2,3) (5,10,4)
00,0 121 (4.6,3)

021)

>

[0,4]
[0.8]
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Subproblem — Constraint Programming

* ”Arc Flow” model

Objectives:
— Minimize: ), (ReducedCost(i, S)))

* Variables:
-S EN Successor of node i
— V. € {False, True} Node i visited by current path
— | € [0..Capacity] Truck load after visit of node i

Constraints:

— S, =i-> V. =False S-V Coherence constraints

— AlIDiff(S) Conservation of flow

— NoSubTour(S) SubTour elimination constraint
-S=j2>1+D,=1| Capacity constraints

+ Redundant Constraints from work on TSP(TW)

®
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Subproblem — Constraint Programming

* "Position” model

* Obijectives:

— Minimize: ), (ReducedCost(P,, P,,,))

* Variables:
-P.EN
— L, € [0..Capacity]

* Constraints:
— AlIDiff(P)
— Liwr =L+ Dy,
— P, = depot = P,,, = depot

Node visited a position k
Truck load after visiting position k

Elementarity of the path
Capacity constraints
Padding at the end of path

®
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INTEGER
OPERATIONS

Branch-and-price

Obtaining integer solutions
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* Column generation + MIP : Branch-and-price
—How to obtain integer solutions?
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* Column generation + MIP : Branch-and-price
—How to obtain integer solutions?

* Branch-and-bound -> solve LP relaxation at each node

* Branch-and-price -> column generation to solve LP relaxation at each node
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* Vehicle routing problem
— Max 2 customers
—Cost of all arc : |
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* Vehicle routing problem
— Max 2 customers
—Cost of all arc : |
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1 2 3
Min 3 3 3
A: 1 1 =1
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* Vehicle routing problem
— Max 2 customers
—Cost of all arc : |
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* Vehicle routing problem
—Max 2 customers

—Cost of all arc : |

xl vl xl

1 2 3

Min 3 3 3
A 1 =1
1 =1
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* Vehicle routing problem
—Max 2 customers

—Cost of all arc : | =
- | x o xl xl
1 2 3
Min 3 3 3
A: 1 1 =1
B: 1 1 =1
C: 1 1 =1
xd
4 OptSol: 0.5 0.5 0.5] 45
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A: 1 il
B:
C:
xl xd xl
1 2 3
Min 3 3 3
A 1 =1
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* Vehicle routing problem
—Max 2 customers

—Cost of all arc : |

Min
A: 1 1 =1

0.5
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B:
C:
xoxl xd o xl
1 2 3 4
3 3 3 2

xr ol xl

1 2 3
Min 3 3 3
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B: 1 1 =1
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* Vehicle routing problem
—Max 2 customers

—Cost of all arc : | =

- | x o xl xl

1 2 3

Min 3 3 3
A: 1 1 =1
B: 1 1 =1
C: 1 1 =1
OptSol: 0.5 0.5 0.5] 45

0 1

xoxd oxdoxd xd xl X

1 2 3 4 1 2 3

Min 3 3 3 2 Min 3 3 3
A 1 1 =1 A: 1 =1
1 =1 1 1 =1
C 1 =1
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* Vehicle routing problem
—Max 2 customers
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—Cost of all arc : | =
—d, xl xl xl
1 2 3
Min 3 3 3
A: 1 1 =1
B: 1 1 =1
C: 1 1 =1
OptSol: 0.5 0.5 0.5] 45
0 1
x o xd xd xl x vl xl xl
1 2 3 4 1 2 3 5
Min 3 3 3 2 Min 3 3 3 2
A 1 1 =1 A 1 =1
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* Vehicle routing problem Why branch on

| i z
~ Max 2 customers arc-flow variables

—Cost of all arc : | =

- | x o xl xl

1 2 3

Min 3 3 3
A: 1 1 =1
B: 1 1 =1
C: 1 1 =1
OptSol: 0.5 0.5 0.5] 45

0 1

x oxl xl xd x vl vl xl

1 2 3 4 1 2 3 5

Min 3 3 3 2 Min 3 3 3 2
A 1 1 =1 A 1 =1
1 =1 1 1 =1
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* Branching possibilities
— Branch on master variables

Great! Subproblem
regenerates .41
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* Branching possibilities
— Branch on master variables... NO!

%
Dol XK

— Branch on subproblem variables
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* Branching possibilities
— Branch on master variables... NO!
— Branch on subproblem variables

— Branch on the master problem constraints
* Add constraints c-> 7z¢J must be added to the subproblems

* Example: Branch on the total number of vehicle used
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* Branching possibilities
— Branch on master variables... NO!
— Branch on subproblem variables

— Branch on the master problem constraint
* Add constraints -> 774/ to add to the subproblems

* Example: Branch on the total number of vehicle used

Best branching for <1
shift scheduling problem
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* Branching possibilities
— Branch on master variables... NO!
— Branch on subproblem variables
— Branch on the master problem constraints

— Cuts
* Again dual variable 7z must be added to add to the subproblems



Applied column generation

Main Challenges
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* Evolution of costs
— Long convergence time

solution vs nb iterations




Applied column generation D

CIRRELT

* Evolution of costs
— Long convergence time
* Speed-up techniques

* Spend more time to
generate new columns

solution vs nb iterations
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* Evolution of costs
— Long convergence time
* Speed-up techniques

* Spend more time to gener.
new columns

* Delete variables in RMP

solution vs time
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* Evolution of costs
— Long convergence time

* Speed-up techniques
* Spend more time to
generate new columns

* Delete variables in RMP

* Gradually increase
computation effort

* Heuristic pricing

*Balance between
subproblems and master
problem

16900

16700

16500

16300

16100

15900

15700

15500
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solution vs time
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* Evolution of costs
— Long convergence time
* Speed-up techniques

* Spend more time to
generate new columns

* Delete variables in RMP

solution vs time

16900
16700

16500

* Gradually increase
computation effort 1630

* Heuristic pricing 1610
- Stabilization - \
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* Evolution of costs
— Long convergence time
* Speed-up techniques

* Spend more time to &
generate new columns

* Delete variables in RMP

solution vs nb iterations

10
16700

16500

* Gradually increase
computation effort

-10

-20

* Heuristic pricing
- Stabilization

15900 -30

-40

15700

15500 -50



Applied column generation

» Stabilization
— Duals are extreme points

— Master problem is
degenerated

— Tail-off effect is due to
difficulty finding the right
dual vector

16900

16700

16500

16300

16100

15900

15700

15500
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solution vs nb iterations

20 40 60 80 100 120 140 160 180
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Stabilization issues
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* Stabilization
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* Stabilization

o oxl vl ol xl o xl
1 2 3 4 5 6
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* Stabilization

o oxl vl ol xl o xl
1 2 3 4 5 6

¢ 10 0 0 10 0 O i
A: 1 1 =1 10
B: 1 1 =1 20
C: 1 1 =1 20
D: 1 1 =1 10
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* Stabilization

o oxl vl ol xl o xl
1 2 3 4 5 6

¢ 10 0 0 10 0 O i
A: 1 1 =1 10
B: 1 1 =1 20
C: 1 1 =1 20
D: 1 1 =1 10

O Customer
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* Stabilization

x vl vl oxd oxd oxl o xl
1 2 3 4 5 6 7

¢ 10 0 0 10 0 0 -5 i
A: 1 1 =1 10
B: 1 1 1 =1 20
C: 1 1 1 =1 20
D: 1 1 =1 10

0O O 1 1 60

O Customer
B Depot
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* Stabilization

x vl vl oxd oxd oxl o xl
1 2 3 4 5 6 7

¢ 10 0 10 0 0O 0 5 i
A: 1 1 =1 10
B: 1 1 1 =1 20
C: 1 1 1 =1 10
D: 1 1 =1 20

0 O 1 1 60

O Customer
B Depot

®

CIRRELT




Column Generation

* Stabilization!

— What to do?
— Popular technique

* Box penalization

wliln
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— Interior point stabilization

Optimal dual space
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Column Generation

* Stabilization!

— What to do?
— Popular technique

* Box penalization
— Interior point stabilization
* Adding a variable to the primal

is equivalent to adding a cut to the dual

Optimal dual space
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* Stabilization!
— What to do!
— Popular technique Optimal dual space
* Box penalization

— Interior point stabilization

* Find multiple dual optimal extreme points
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» Stabilization!
—What to do!?

— Popular technique Optimal dual space

o . Sy
* Box penalization

— Interior point stabilization
* Find multiple dual optimal extreme points &

— Do a linear combination

\>

Average time Average nb
Iterations
Unstabilized 384.4 s 72.6
Box penalization {389.1 s 61.0
IPS 2779 s 37.1
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* Stabilization!

— What to do?
— Popular technique Optimal dual space

* Box penalization
— Interior point stabilization
* Find multiple dual optimal extreme points

— Do a linear combination

* Simple idea: barrier algorithm without crossove



Any Questions !

Thank you !
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THANKED

A TRUCKER TODAY?




