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Introduction 



Stochastic Vehicle Routing: an Application of  
Stochastic Optimization Models 

Vehicle Routing Problems 

 Introduced by Dantzig and Ramser in 1959 

 One of the most studied problem in the area of 
logistics 

 The basic problem involves delivering given 
quantities of some product to a given set of 
customers using a fleet of vehicles with limited 
capacities. 

 The objective is to determine a set of minimum-
cost routes to satisfy customer demands. 
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Vehicle Routing Problems 

Many variants involving different constraints or 
parameters: 

 Introduction of travel and service times with route 
duration or time window constraints 

 Multiple depots 

 Multiple types of vehicles 

 ... 
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What is Stochastic Vehicle Routing? 

Basically, any vehicle routing problem in which one 
or several of the parameters are not deterministic: 

 Demands 

 Travel or service times 

 Presence of customers 

 … 



 VRP with stochastic demands (VRPSD) 
 A probability distribution is specified for the demand of 

each customer. 
 One usually assumes that demands are independent (this 

may not always be very realistic...). 

 VRP with stochastic customers (VRPSC) 
 Each customer has a given probability of requiring a visit. 

 VRP with stochastic travel times (VRPSTT) 
 The travel times required to move between vertices, as 

well as sometimes service times, are random variables. 

 
 

Main classes of stochastic VRPs 
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Basic Concepts in Stochastic 
Optimization 
 



Dealing with uncertainty in optimization 

 Very early in the development of operations 
research, some top contributors realized that : 
 In many problems there is very significant 

uncertainty in key parameters; 
 This uncertainty must be dealt with explicitly. 

 This led to the development of : 
 Stochastic programming with recourse (1955) 
 Dynamic programming (1958) 
 Chance-constrained programming (1959) 
 Robust optimization (more recently)  
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Information and decision-making 

In any stochastic optimization problem, a key 
issue is: 

 How do the revelation of information on the 
uncertain parameters and decision-making 
(optimization) interact? 
 When do the values taken by the uncertain 

parameters become known? 
 What changes can I (must I) make in my plans on 

the basis of new information that I obtain? 
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Stochastic programming with recourse 

 Proposed separately by Dantzig and by Beale in 
1955. 

 The key idea is to divide problems in different stages, 
between which information is revealed.  

 The simplest case is with only two stages. The 
second stage deals with recourse actions, which 
are undertaken to adapt plans to the realization of 
uncertainty. 

 Basic reference:  
 J.R. Birge and F. Louveaux,  Introduction to 

Stochastic Programming, 2nd edition, Springer, 2011. 
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Dynamic programming 
 Proposed by Bellman in 1958. 
 A method developed to tackle effectively sequential 

decision problems.  
 The solution method relies on a time decomposition 

of the problem according to stages. It exploits the 
so-called Principle of Optimality. 

 Good for problems with limited number of possible 
states and actions. 

 Basic reference:  
 D.P. Bertsekas, Dynamic Programming and Optimal 

Control, 3rd edition, Athena Scientific, 2005. 
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Chance-constrained programming 

 Proposed by Charnes and Cooper in 1959. 
 

 The key idea is to allow some constraints to be 
satisfied only with some probability. 

  
 E.g., in VRP with stochastic demands, 

Pr{total demand assigned to route r ≤ capacity } ≥ 1-α 
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 Here, uncertainty is represented by the fact that the 
uncertain parameter vector must belong to a given 
polyhedral set (without any probability defined) 
 E.g., in VRP with stochastic demands, 
  having set upper and lower bounds for each demand, 

 together with an upper bound on total demand. 

 Robust optimization looks in a minimax fashion for the 
solution that provides the best “worst case”. 
 
 

Robust optimization 
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Modelling paradigms 
 



Also called re-optimization 
 Based on the implicit assumption that information 

is revealed over time as the vehicles perform their 
assigned routes. 

 Relies on Dynamic programming and related 
approaches  (Secomandi et al.) 

 Routes are created piece by piece on the basis on 
the information currently available. 

 Not always practical (e.g., recurrent situations) 

Real-time optimization 
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A priori optimization 
 
 A solution must be determined beforehand; 

this solution is “confronted” to the realization of 
the stochastic parameters in a second step. 

 Approaches: 
 Chance-constrained programming 
 (Two-stage) stochastic programming with recourse 
 Robust optimization 
 [“Ad hoc” approaches] 
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Chance-constrained programming 
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 Probabilistic constraints can sometimes be transfor-
med into deterministic ones (e.g., in in VRP with 
stochastic demands, when one imposes that 

Pr{total demand assigned to route r ≤ cap. } ≥ 1-α,  
if customer demands are independent and Poisson). 

 
 This model completely ignores what happens when 

things do not “turn out correctly”. 



 Not used very much in stochastic VRP up to now, but 
papers have been appearing in the last few years for 
node and arc routing problems. 

 Model may be overly pessimistic. 
 

Robust optimization 
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 Recourse is a key concept in a priori optimization 
 What must be done to “adjust” the a priori solution to the 

values observed for the stochastic parameters! 
 Another key issue is deciding when information on the 

uncertain parameters is provided to decision-makers. 
 Solution methods: 

 Integer L-shaped (Laporte and Louveaux) 
 Column generation (Branch & Price) 
 Heuristics (including metaheuristics) 

 Probably closer to actual industrial practices,              
if recourse actions are correctly defined! 

 
 

Stochastic programming with recourse 
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VRP with stochastic demands 
 



 A probability distribution is specified for the 
demand of each customer. 

 One usually assumes that demands are 
independent                                                       
(this may not always be very realistic...). 

 Probably, the most extensively studied SVRP: 
 Under the reoptimization approach (Secomandi) 
 Under the a priori approach (several authors) using 

both the chance-constrained and the recourse 
models. 

 

VRP with stochastic demands (VRPSD) 
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 Classical recourse strategy: 
 Return to depot to restore vehicle capacity 
 Does not always seem very appropriate or “intelligent” 
 

 Other recourse strategies are possible, however, 
and often closer to actual industrial practices. 
 Fixed threshold policies 
 Variable threshold policies 
 Preventive restocking (Yang, Mathur, Ballou, 2000) 
 Pairing routes (Erera et al., 2009)  

 
 

VRP with stochastic demands 

Stochastic Vehicle Routing: an Application of  
Stochastic Optimization Models 



 Approximate solutions can be obtained fairly 
easily using metaheuristics                              
(e.g., Tabu Search, as in Gendreau et al., 1996). 
 

 Computing effectively the value of the recourse 
function still remains a challenge. 

VRP with stochastic demands 
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The following material is taken from  
 O. Jabali, W. Rei, M. Gendreau, G. Laporte (2014). 

New Valid Inequalities for the Multi-Vehicle 
Routing Problem with Stochastic Demands. 
Discrete Applied Mathematics, 177, 121-136. 
 

A branch-and-cut approach  
(direct formulation) 
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Motivation Literature Review VRPSD model IntegerL-shaped algorithm Computational results Conclusions

Model
Input

G(V,E) = undirected graph, V = {v1, . . . , vn} and E = {(vi, vj): vi, vj ∈ V , i < j}
ξi = demand of client i, where i = 2, . . . , n
C = (cij) travel cost matrix
D = capacity of each vehicle

Decision variables

xij = {0, 1} for i, j > 1
x1j = {0, 1, 2} for j > 1

The considered case
Client demands are independent
ξj ∼ N(µj , σj) and ξj ∈ (0, D), j = 2, . . . , n
Recourse rules⇒ return to depot only when failure occurs
For a given route (vr1 = v1, vr2 , . . . , vrt+1 = v1)

Q1,r = 2
t∑
i=2

i−1∑
l=1

P

(
i−1∑
s=2

ξrs ≤ lD <
i∑

s=2

ξrs

)
c1ri

Q(x) =
m∑
i=1

min{Qk,1,Qk,2},
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Motivation Literature Review VRPSD model IntegerL-shaped algorithm Computational results Conclusions

Model

(VRPSD) Minimize
∑
i<j

cijxij +Q(x)

subject to
n∑
j=2

x1j = 2m,

∑
i<k

xik +
∑
j>k

xkj = 2, (k = 2, . . . , n),

∑
vi,vj∈S

xij ≤ |S| −


∑
vi∈S

E(ξi)/D

 , S ⊂ V \ {v1}, 2 ≤ |S| ≤ n− 2

0 ≤ xij ≤ 1 1 ≤ i < j < n),

0 ≤ x0j ≤ 2 (j = 2, . . . , n),

x = (xij) integer.

9 / 30



 Computational results on problems with independent 
truncated Normal demands 
 30 instances for each combination of m and n 
 10 hours of CPU time for each run. 

 

A branch-and-cut approach 
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The following material is taken from  
 C. Gauvin, G. Desaulniers, M. Gendreau (2014).  

A Branch-Cut-and-Price Algorithm for the Vehicle 
Routing Problem with Stochastic Demands, 
Computers & Operations Research, 50, 141-153. 
 
 

A branch-and-price approach  
(set covering formulation) 
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BCP VRPSD

Introduction

Litterature

Heuristics
Tillman (1965) - Savings-based heuristics for multi-depot and
Poisson demands
Golden, Stewart (1983)
Gendreau, Séguin (1996) - Tabou search

Integer L-shaped method for problems with simple recourse
Laporte, Louveaux (1993)
Gendreau, Laporte, Séguin (1995)
Hjorring, Holt (1999)
Laporte, Louveaux, Van Hamme (2001)

Column Generation
Christiansen, Lysgaard (2007) Branch-and-price

Our Contribution

Develop a competitive branch-cut-and-price algorithm for the VRPSD based on
the work of Christiansen et Lysgaard (2007).
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BCP VRPSD

Mathematical model

Notation

G = (N ′ = N ∪ {o, o′},A) : undirected graph
N = {1, 2, ..., n} : set of clients
A = {(i , j)|i , j ∈ N ; i 6= j} ∪ {(o, j)|j ∈ V } ∪ {(j , o′)|j ∈ N} : set of arcs

......
......

......

......

1 2

3 4

o o'

......
......

......
...... n
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BCP VRPSD

Mathematical model

Notation

cij : determinist travel cost from i ∈ N ′ à j ∈ N ′

p = (i1, ..., ih) : route where ij ∈ N ′ for j ∈ {1, ..., h}
cp : determinist travel cost of route p
ĉp : total expected failure cost of route p
αip : binary parameter indicating if route p visits client i ∈ N or not

P : set of all routes from o to o′ which are feasible on average

......
......

......

......

1 2

3 4

o o'

con=cno

c34=c43

......
......

......
...... n
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BCP VRPSD

Mathematical model

Notation

V : set of |V| identical vehicles
Q : capacity of a vehicle

......
......

......

......

1 2

3 4

o

......
......

......
...... n

o'

|V |

Q
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BCP VRPSD

Mathematical model

Notation

ξi ∼ Ψ(Eξ [ξi ] ,Vξ [ξi ]) : random variable indicating demand of client i ∈ N
following distribution Ψ ;

Given path p = (i1, i2, ...ih)∑h
j=1 Eξ

[
ξij

]
= µih : expected cumulated demand at ih∑h

j=1 Vξ
[
ξij

]
= σih : expected cumulated variance at ih

......
......

......

......

1 2

3 4

o

E[ξ1+ξ3+ξ4]=µ4

......
......

......
...... n

o'

|V |

Q
ξ3 ξ4

ξ1 ξ2

ξn

V[ξ1+ξ3+ξ4]=σ4
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BCP VRPSD

Mathematical model

Notation - decision variables

First stage

xij : binary variable indicating if a vehicle follows the arc (i , j) ∈ A.
λp : binary variable indicating if we choose route p or not

Second stage

Q(x) : recourse function (expected failure cost of a given route)

Charles Gauvin (École Polytechnique de Montréal ) BCP VRPSD 10/29



BCP VRPSD

Mathematical model

Dantzig-Wolfe Decomposition

Master Problem and Subproblem - VRPSD

min
λ

∑
p∈P

ĉpλp min
x

∑
i∈N ′

∑
j∈N ′

c̄ijxij +Q(x)

s. t. :
∑

p∈P

αipλp = 1∀i ∈ N s. à :
∑

(i,j)∈δ−({j})

xij −
∑

(j,i)∈δ+({j})

xji =

{−1 if j = o
0 else ∀j ∈ N ′
1 if j = o′

λp ∈ {0, 1} ∀p ∈P ∑
i∈N ′

∑
j∈N ′

Eξ
[
ξj
]
xij ≤ Q

xij ∈ {0, 1} ∀i , j ∈ N ′

(MP) (SP)

Reduced cost

c̄ij = cij − πj if j 6= o′
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BCP VRPSD

Mathematical model

Dantzig-Wolfe Decomposition

Computation of Q(x)

Given
p = (i1, i2, ...ih−1, ih) ⊆ N ′ from o = i1 to ih

1Expected failure cost at client ih for p

EFC(µih , σih , ih) = 2coih

∞∑
u=1

(Pξ

h−1∑
l=1

ξil ≤ uQ <
h∑

l=1

ξil

)

1-Dror & Trudeau (1987), Laporte et al. (2002), Christiansen & Lysgaard (2007)

Total cost of route p= determinist cost p + expected failure cost p

ĉp =
h∑

j=1

(
cih ih+1

+ EFC(µih+1
, σih+1

, ih+1)
)
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BCP VRPSD

Mathematical model

Dantzig-Wolfe Decomposition

Creation of the state-space graph GS = (NS,AS)

ij

o

(E[ξj],V[ξj])

o’

(Q,V[ξj])
(Q,Vmax[ξj])

(μi,σi)

(E[ξi+ξj],V[ξi+ξj])

coj+
EF
C(μ

j,σ j
, j)
{

μj=Q

(μi+E[ξj],σi+V[ξj])
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BCP VRPSD

Numerical results

Numerical results

Max alloted time : 20 minutes,

3,4 GHz and 16 GB of RAM vs 1,5GHz and 480 MB of RAM ⇒ scaling factor : 1.98

Poisson demands + A, E, P instances

Instance
Base (This work) Christiansen & Lysgaard (2007)

Acceleration
factorTime LB root

UB
# B & B
Nodes

# Rounds
of cuts

# Cuts
CC

# Cuts
SRI

Time LB root
UB

# B & B
Nodes

A-n32-k5 24.1 0.98 0 7 6 90 142.4 0.96 2467 5.9
A-n33-k5 5.3 1 0 6 29 15 4 0.99 117 0.8
A-n33-k6 4.9 1 0 4 3 20 24.7 0.98 909 5.1
A-n34-k5 9.0 0.98 0 6 27 28 # 0.97 16059 ≥ 67.3
A-n36-k5 46.9 0.98 0 10 30 90 # 0.92 8035 ≥12.9
A-n37-k5 23.4 0.98 0 7 12 72 # 0.97 9191 ≥25.9
A-n37-k6 22.8 0.99 2 11 56 62 # 0.98 16195 ≥26.6
A-n38-k5 42.8 0.97 6 11 22 74 # 0.95 14499 ≥14.2
A-n39-k5 5.0 1 0 0 0 0 1.5 1 9 0.3
A-n39-k6 19.3 0.99 0 8 28 45 140.9 0.97 2431 7.3
A-n44-k6 125.0 0.99 12 21 21 189 # 0.98 11077 ≥4.9
A-n45-k6 86.3 0.98 2 11 9 120 # 0.9 9313 ≥7.0
A-n45-k7 30.5 1 0 9 8 70 445.5 0.99 5365 14.6
A-n46-k7 18.7 0.99 0 4 58 30 # 0.98 8149 ≥32.4
A-n48-k7 27.5 0.99 0 6 42 30 # 0.93 7729 ≥22.0
A-n53-k7 512.4 0.99 12 23 37 240 # 0.93 5385 ≥1.2

Charles Gauvin (École Polytechnique de Montréal ) BCP VRPSD 24/29
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Numerical results

Numerical results (cont’d)

Instance
Base (This work) Christiansen & Lysgaard (2007)

Acceleration
factorTime LB root

UB
# B & B
Nodes

# Rounds
of cuts

# Cuts
CC

# Cuts
SRI

Time LB root
UB

# B & B
Nodes

A-n54-k7 310.5 0.99 6 18 55 126 # 0.94 5925 ≥2.0
A-n55-k9 33.2 0.99 0 7 50 45 # 0.91 9979 ≥18.3
A-n60-k9 # 0.42 20 35 49 219 # 0.93 6889 #

E-n22-k4 0.1 1 0 0 0 0 0.5 1 9 5
E-n33-k4 32.6 1 0 0 0 0 43.4 0.99 73 1.3
E-n51-k5 # 0.95 4 29 23 212 # 0.97 2771 #

P-n16-k8 0.0 1 0 1 1 0 0 1 17 #

P-n19-k2 9.7 0.94 0 7 4 60 77.3 0.94 1815 8.0
P-n20-k2 128.8 0.95 6 15 5 130 177.8 0.95 3191 1.4
P-n21-k2 2.2 1 0 1 3 0 2.5 0.99 27 1.1
P-n22-k2 46.7 0.97 0 8 3 90 110.6 0.97 1335 2.4
P-n22-k8 0.0 1 0 2 1 5 0 1 65 #

P-n23-k8 0.0 1 0 0 0 0 0.5 1 0 #

P-n40-k5 6.9 1 0 1 4 0 4.5 1 35 0.7
P-n45-k5 1193.8 0.98 12 34 22 272 # 0.95 4561 #

P-n50-k10 54.6 0.99 16 28 29 119 # 0.95 18901 ≥11.1
P-n50-k7 40.4 0.99 0 11 26 75 # 0.95 5311 ≥15.0
P-n50-k8 35.7 0.99 2 11 9 98 # 0.91 10409 ≥17.0
P-n51-k10 10.0 0.99 0 8 21 56 217.2 0.99 5431 21.7
P-n55-k10 26.4 0.99 0 10 23 60 # 0.92 11257 ≥23.0
P-n55-k15 19.9 1 36 32 23 61 400 0.99 20027 20.1
P-n55-k7 103.8 0.99 0 14 22 120 # 0.94 2441 ≥5.8
P-n60-k10 417.5 0.99 34 52 42 273 # 0.95 4969 ≥1.5
P-n60-k15 7.0 1 0 7 37 26 # 1 19029 ≥86.6
Average 91.7 0.97 4.25 11.9 21 80.55 99.6 0.96 6284.93 13.6
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 C.E. Gounaris, W. Wiesemann, C.A. Floudas (2013).  
The Robust Capacitated Vehicle Routing Problem 
Under Demand Uncertainty.  

 Operations Research,  61 (3), 677-693. 
 
 The authors consider the generic case where the 

customer demands are supported on a polyhedron. 
 Robust solutions must be feasible for all demand 

vectors in the polyhedron. 
 Several interesting references. 

 

A robust optimization approach 
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VRP with stochastic customers 
 



 Each customer has a given probability of 
requiring a visit. 

 Problem grounded in the pioneering work of 
Jaillet (1985) on the Probabilistic Traveling 
Salesman Problem (PTSP). 

 At first sight, the VRPSC is of no interest under 
the reoptimization approach. 

VRP with stochastic customers (VPRSC) 
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 Recourse action: 
 “Skip” absent customers 

 Has been extensively studied by Gendreau, 
Laporte and Séguin in the 1990’s: 
 Exact and heuristic solution approaches 

 Can also be used to model the Consistent VRP 
(working paper with Ola Jabali and Walter Rei). 

 
 

VRP with stochastic customers (VPRSC) 
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The Consistent VRP with Stochastic Customers 

The consistent vehicle routing problem  
 First introduced by Groër, Golden, and Wasil (2009) 

 Have the same driver visiting the same customers at roughly the 
same time each day that these customers need service 

 Focus is on the customer 
 Planning is done for D periods, known demand, m vehicles 
 Arrival time variation is no more than L   

 Minimize travel time over D periods 
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day 1 day 2 

Depot Depot 



Problem definition  
The consistent vehicle routing problem with 
stochastic customers 
 Each customer has a probability of occurring  

 Same driver visits the same customers 
 A delivery time window is quoted to the customer  
 → (Self-imposed TW) 

 Cost structure 
 Penalties for early and late arrivals 
 Travel times 

Stochastic Vehicle Routing: an Application of  
Stochastic Optimization Models 

Depot 
a priori  approach  

 
Stage 1 

Plan routes and set targets  
Stage 2 

Compute travel times and penalties 



Problem data  

 An undirected graph  G=(V,A) 
 V={v1,..,vn} is a set of vertices 
 E={(vi, vj): vi, vj   V, i<j} is a set of edges 
 Vertex v1 corresponds to the depot 
 Verticesv2,..,vn correspond to the potential clients 
 cij  is the travel time between i and j 

 m is the number of available vehicles 
 A vehicle can travel at most λ hours  
 pi  is the probability that client i places an order  
 Ω is the set of possible scenarios associated with the 

occurrences for all customers 
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Model  
 First-stage decision variables : 

  xij = 1, if client j is visited immediately after client i for 
   2 ≤ i<j≤ n, and 0 otherwise 

  x1j  can take the values 0,1 or 2 
   ti , target arrival time at customer i 

 

 ξ :  a random vector containing all Bernoulli random variables 
       associated with the customers. 
 For each scenario ω   Ω, let ξ(ω)T=[ξ2(ω), …, ξn(ω)]  

 ξi(ω) = 1, if customer i is present and 0 otherwise.  

 Q(x) : second-stage cost (recourse) 
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Model 
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Model 

T

,
min c ( )

x t
x Q x+ 
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Tc x

Reformulation the objective function: 

is a lower bound on the expected 
travel time 
Gendreau, Laporte and Séguin (1995) 
    
And 

T( ) ( ) cQ x Q x x= − 



Model 

 Assumption: early arrivals do not wait for the time window 
 Evaluation of the second stage cost  

Qr,δ: expected recourse cost corresponding to route r if  orientation 
 δ is chosen 

QP
r,δ: total average penalties associated with time window deviations   
 for route r if orientation δ is chosen 

QT
r: total average travel time for route for route r 
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T PQ Q Qδ δ= + ,1 ,2

1
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r
Q x Q Q

=
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Model 

Given a route r, we relabel the vertices on the route according 
to a given orientation δ as follows: 
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1 1 2 1 1( , ,..., , )
r r r rt tv v v v v vδ δ δ δ
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( )
ri

vδφ : the minimum expected penalty associated with            
customer    

ir
vδ

1
,

1
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r
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t
r
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i
Q vδ δφ

+

=
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Model 
( )

ri
vδφ
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v0 v5 v4 v7 

v0 v5 v4 

v0 v4 v7 

v0 v4 

5 7p p

5 7(1 )p p−

5 7(1 )p p−

5 7(1 )(1 )p p− −

Setting of      and evaluation of 

Parameters: 
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Solution procedure 
Based on the Integer 0-1 L-Shaped Method proposed by Laporte 

and Louveaux (1993)  
 Variant of branch-and-cut 

 Assumption 1: Q(x) is computable 
 Assumption 2: There exists a finite value L = general lower bound for 

the recourse function.  

 Operates on the current problem (CP) on each node of the search tree  
 In the VRP context, CP is relaxed: 

I. Integrality constraints  
II. Subtour elimination and route duration constraints 
III.   
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Preliminary results 

Experimental sets: 
 Vertices were generated similar to Laporte, 

Louveaux and van Hamme (2002) 

 p values are randomly generated within 0.6 and 0.9 

 20 customers with 4 vehicles or 15 with 3 vehicles  
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Preliminary results 
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Set  N 
Initial 
best 

integer 

Initial 
best 
node 

Initial GAP Final solution Final GAP  Run time 

1 15 356.7 303.1 15.0% 332.8 <1% 64 
2 15 352.5 264.3 25.0% 285.2 <1% 55 
3 15 397.3 360.3 9.3% 388.1 <1% 263 
4 15 363.3 303.0 16.6% 312.8 <1% 69 
5 15 407.7 357.0 12.4% 393.3 <1 97 
6 20 616.2 554.1 10.1% 597.2 <1% 879 
7 20 486.4 486.4 6.2% 461.0 <1% 340 
9 20 476.5 405.4 14.9% 451.3 <1% 27564 

10 20 520.0 414.0 20.4% 455.1 <1 64638 
11 20 449.4 368.5 18.0% 397.8 <1 67501 
12 20 526.9 475.3 9.8% 478.6 <1 2242 
13 20 474.0 436.5 7.9% 448.0 <1 1244 
15 20 571.9 472.1 17.5% 486.7   9.35% 25200 
16 20 444.3 397.7 10.5% 416.2 <1 25200 
17 20 442.5 390.9 11.7% 414.2  3.13% 25200 
8 20 494.4 401.0 18.9% 433.1 3.41% 86400 

14 20 522.8 449.5 14.0% 503.5 1.53% 86400 



VRP with stochastic service 
or travel times  



VRP with stochastic service or travel times  

 The travel times required to move between vertices 
and/or service times are random variables. 

 The least studied, but possibly the most interesting of 
all SVRP variants. 

 Reason: it is much more difficult than others, because 
delays “propagate” along a route. 

 Usual recourse: 
 Pay penalties for soft time windows or overtime. 

 All solution approaches seem relevant, but present 
significant implementation challenges. 

Stochastic Vehicle Routing: an Application of  
Stochastic Optimization Models 



VRP with stochastic service or travel times 
and soft time windows  

The following material is taken from  
 D. Tas, M. Gendreau, N. Dellaert, T. van Woensel, A.G. 

de Kok (2014).   Vehicle Routing with Soft Time Windows 
and Stochastic Travel Times: A Column Generation and 
Branch-and-Price Solution Approach.  

 European Journal of Operational Research, 236(3), 789-
799. 

Stochastic Vehicle Routing: an Application of  
Stochastic Optimization Models 



INTRODUCTION

Considered model (introduced in Taş et al. 2013)

Distinguishes between transportation costs and service costs

Transportation costs: total distance + number of vehicles + total expected overtime

Service costs: early and late arrivals

Solution approach

Column generation procedure

Master problem: set partitioning problem

Pricing subproblem: Elementary Shortest Path Problem with Resource Constraints
(ESPPRC)

To generate an integer solution: embed our column generation procedure within a
branch-and-price method
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PROBLEM DESCRIPTION

G = (N,A) where N = {0, 1, ..., n} and A = {(i, j)|i, j ∈ N, i 6= j}

Each customer i ∈ N \ {0} has

a known demand (qi ≥ 0),

a fixed service duration (si ≥ 0), and

a soft time window ([li, ui], li ≥ 0, ui ≥ 0).

No waiting!

Weight on each arc (i, j)∈ A, dij

Capacity of each vehicle v ∈ V, Q
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MODEL FORMULATION

min
∑
v∈V

[
ρ

1

C1

(
cd
∑
j∈N

Djv(x) + ce
∑
j∈N

Ejv(x)
)

+(1− ρ)
1

C2

(
ct
∑
i∈N

∑
j∈N

dijxijv + cf
∑

j∈N\{0}
x0jv + coOv(x)

)]
(1)

subject to
∑
j∈N

∑
v∈V

xijv = 1, i ∈ N \ {0}, (2)

∑
i∈N

xikv −
∑
j∈N

xkjv = 0, k ∈ N \ {0}, v ∈ V, (3)

∑
j∈N

x0jv = 1, v ∈ V, (4)

∑
i∈N

xi0v = 1, v ∈ V, (5)

∑
i∈N\{0}

qi
∑
j∈N

xijv ≤ Q, v ∈ V, (6)

∑
i∈B

∑
j∈B

xijv ≤ |B| − 1, B ⊆ N \ {0}, v ∈ V, (7)

xijv ∈ {0, 1}, i ∈ N, j ∈ N, v ∈ V. (8)
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PROPERTIES OF THE ARRIVAL TIMES

Arrival time of vehicle v at node j:

Yjv =
∑

(l,k)∈Ajv

Tlk (9)

Random traversal time spent for one unit of distance→ Gamma distributed

Uncertainty per km

Compute expected delay, earliness and overtime exactly
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COLUMN GENERATION

Master problem: A set partitioning problem

min
∑
p∈P

Kpyp (10)

subject to
∑
p∈P

aipyp = 1, i ∈ N \ {0}, (11)

yp ∈ {0, 1}, p ∈ P. (12)

P: set of all feasible vehicle routes that start from and end at the depot,

Kp: total weighted cost of route p,

aip: equal to 1 if customer i is served by route p and 0, otherwise.
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COLUMN GENERATION

Pricing subproblem: For each vehicle v, an Elementary Shortest Path Problem
with Resource Constraints (ESPPRC)

min Kp (13)

subject to (3)− (8). (14)

p: route of vehicle v,

Kp: reduced cost of route p.

Kp =Kp −
∑

i∈N\{0}

aipui

=ρ
1

C1

(
cd

∑
j∈N

Djv(x) + ce

∑
j∈N

Ejv(x)

)

+(1− ρ)
1

C2

(
ct

∑
i∈N

∑
j∈N

dijxijv + cf

∑
j∈N\{0}

x0jv + coOv(x)

)
−

∑
i∈N\{0}

aipui, (15)

ui, i ∈ N \ {0}: dual price associated with covering constraints (11).
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COMPUTATIONAL RESULTS

TABLE: Results of problem instances in RC set with 25 customers with BF method

Instance RootLB RootUB BestLB BestUB CPU Gap% Tree
RC101 2663.82 2688.85 2669.81 2682.70 1524.3 0.48 8
RC102 2656.18 2678.14 2663.84 2676.58 1399.7 0.48 8
RC103 2652.06 2675.63 2658.32 2670.58 1464.8 0.46 8
RC104 2651.93 2675.57 2658.23 2670.48 4321.4 0.46 10
RC105 2657.93 2684.02 2664.00 2677.30 1594.5 0.50 8
RC106 2651.72 2674.03 2659.46 2673.26 10800.0 0.52 12
RC107 2648.38 2672.19 2655.92 2669.05 2113.2 0.49 8
RC108 2648.18 2670.92 2654.35 2667.37 1956.2 0.49 8
RC201 2708.91 2716.07 2708.91 2716.07 18.5 0.26 0
RC202 2683.89 2689.12 2683.89 2689.12 17.0 0.19 0
RC203 2662.52 2674.81 2662.52 2674.81 16.9 0.46 0
RC204 2660.69 2674.31 2660.69 2673.94 126.8 0.50 4
RC205 2686.93 2697.12 2686.93 2697.12 22.3 0.38 0
RC206 2684.94 2696.37 2684.94 2696.37 15.5 0.43 0
RC207 2657.66 2683.02 2664.92 2680.39 10800.0 0.58 11
RC208 2648.18 2669.69 2654.06 2667.19 2047.8 0.49 8
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COMPUTATIONAL RESULTS

TABLE: Results of problem instances in RC set with 25 customers with DF method

Instance RootLB RootUB BestLB BestUB CPU Gap% Tree
RC101 2663.82 2895.13 2664.57 2687.43 10800.0 0.86 34
RC102 2656.18 2885.91 2656.18 2678.37 10800.0 0.84 25
RC103 2652.06 2903.37 2652.06 2677.50 10800.1 0.96 29
RC104 2651.93 2902.25 2651.93 2670.48 10800.6 0.70 31
RC105 2657.93 2886.28 2657.93 2681.08 10800.0 0.87 25
RC106 2651.72 2913.33 2651.84 2679.39 10800.3 1.04 29
RC107 2648.38 2908.49 2648.42 2674.13 10800.2 0.97 36
RC108 2648.18 2901.36 2648.18 2677.44 10800.0 1.10 37
RC201 2708.91 3050.71 2709.69 2721.21 142.3 0.43 8
RC202 2683.89 2994.67 2683.89 2689.62 105.7 0.21 5
RC203 2662.52 2929.48 2662.52 2674.46 3019.5 0.45 19
RC204 2660.69 2929.48 2660.69 2673.72 549.1 0.49 16
RC205 2686.93 2983.00 2686.93 2699.54 379.7 0.47 18
RC206 2684.94 2989.09 2686.64 2693.69 121.4 0.26 8
RC207 2657.66 2937.62 2657.66 2683.87 10800.0 0.99 28
RC208 2648.18 2902.54 2648.18 2677.90 10800.2 1.12 40

Michel Gendreau (MAGI and CIRRELT) VRP with Soft TW and Stochastic TT OD 2013 – May 6-8, 2013 20 / #



COMPUTATIONAL RESULTS

TABLE: Average results of problem instances in C, R and RC sets with 20, 25, 50 and 100
customers obtained by BF and DF methods

Set Method Avg. Gap% Set Method Avg. Gap%
C1-20 BF 9.61 C1-20 DF 10.87
C2-20 BF 7.91 C2-20 DF 10.45
R1-20 BF 8.74 R1-20 DF 11.14
R2-20 BF 8.77 R2-20 DF 11.18

RC1-20 BF 0.46 RC1-20 DF 0.47
RC2-20 BF 0.40 RC2-20 DF 0.40
C1-25 BF 7.80 C1-25 DF 9.22
C2-25 BF 7.30 C2-25 DF 10.15
R1-25 BF 3.30 R1-25 DF 5.00
R2-25 BF 2.97 R2-25 DF 6.36

RC1-25 BF 0.49 RC1-25 DF 0.92
RC2-25 BF 0.41 RC2-25 DF 0.55
C1-50 BF 4.42 C1-50 DF 9.07
C2-50 BF 4.24 C2-50 DF 22.78
R1-50 BF 2.80 R1-50 DF 4.27
R2-50 BF 2.71 R2-50 DF 5.63

RC1-50 BF 2.76 RC1-50 DF 4.40
RC2-50 BF 2.67 RC2-50 DF 6.07
C1-100 BF 2.31 C1-100 DF 9.40
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COMPUTATIONAL RESULTS

Problem instances with 100 customers

Limit for total CPU is set to 8 hours

Applied strategy→ DF method

TABLE: Average results of problem instances in C, R and RC sets with 100 customers
obtained by DF method with 8 hour CPU limit

Set Method Avg. Gap%
C1-100 DF 7.26
C2-100 DF 22.45
R1-100 DF 4.01

RC1-100 DF 2.82
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VRP with stochastic service times: a 
chance-constrained formulation 

Following material from  
 F. Errico, G. Desaulniers, M. Gendreau, W. Rei, L.-M. 

Rousseau. The Vehicle Routing Problem with hard time 
windows and stochastic service times.  

 Forthcoming (hopefully…!) 

Stochastic Vehicle Routing: an Application of  
Stochastic Optimization Models 



The VRPTW-ST Context and related literature

Context

We consider a VRP with

Stochastic service times
Hard time windows
No demands, nor vehicle capacity
VRPTW-ST

Several applications :

Dispatching of technicians or repairmen :

Perform specific services at the customers
Details of the service to perform are unknown beforehand

Energy production planning :

Several power plants are connected in a network
Maintenance operations (implying outage) must planned in specific
hard time windows (technicians are not available otherwise)
Duration of the operations is unknown beforehand
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The VRPTW-ST Context and related literature

Related literature

Several papers on VRP/m-TSP with stochastic travel times and
customer deadlines or soft time windows (see Adulyasak and Jaillet,
2014)
TSP with hard time windows and stochastic travel times in Jula et al.
(2006), Chang et al. (2009)

Heuristic methods

VRP with stochastic travel times, demand uncertainty and customer
deadlines in Lee et al. (2012)

Robust optimization approach

TSP with customers deadlines and stochastic customers in Campbell
and Thomas (2008)
With respect to previous works, we aim to

1 Use chance-constrained stochastic model
2 Use two-stage stochastic programming with recourse

Develop an exact solution method
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Chance-constrained model Problem definition

Notation and assumptions

A directed graph G = (V ,A), where
V = {0, 1, . . . , n} is the node set

0 represents a depot
Vc = {1, . . . , n} the customer set,

A = {(i , j) | i , j ∈ V } is the arc set.

A non-negative travel cost cij and travel time tij are associated with
each arc (i , j) in A.

A hard time window [ai , bi ], i ∈ Vc

A stochastic service time si , i ∈ Vc .

Service time probability functions are supposed to be known and :

Discrete with finite support
Mutually independent
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Chance-constrained model Problem definition

The VRPTW-ST with Chance Constraint

Definition ( Successful Route )

Given a service time realization, a route is said Successful if :

(i) Route starts and ends in node 0 ;

(ii) Service at customers starts within the given time windows.

Vehicles may arrive before the beginning of a time window.
Late service time is not allowed

The VRPTW-ST finds a set of route such that :

1 Routes start and end in node 0 ;

2 Routes induce a proper partition of all customers

3 The global probability that the route plan is Successful is higher than
a given reliability threshold 0 < α < 1 ;

4 The travel cost is minimized.
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Chance-constrained model Problem definition

Formulation

R : set of all possible routes.

air = 1 prameter if route r visits customer i and 0 otherwise.

cr the cost associated with route r

xr = 1 binary variable if route r is chosen, 0 otherwise

Formulation :

min
∑

r∈R

crxr (1)

s.t.
∑

r∈R

airxr = 1 ∀i ∈ Vc (2)

Pr{All routes are Successful} ≥ α (3)

xr ∈ {0, 1} ∀r ∈ R, (4)
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Chance-constrained model Problem definition

Linearization

Mutually independent service time ⇒

Proposition

Let R′ denote a set of routes inducing a proper partition of the customers
set Vc . Given any two routes r1, r2 ∈ R′, the success probability of r1 is
independent from the success probability of r2.
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Chance-constrained model Problem definition

Linearization

Mutually independent service time ⇒

Proposition

Let R′ denote a set of routes inducing a proper partition of the customers
set Vc . Given any two routes r1, r2 ∈ R′, the success probability of r1 is
independent from the success probability of r2.

This can be used to linearize constraint (3) :

Pr{ All routes are Successful} ≥ α
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Chance-constrained model Problem definition

Linearization

Mutually independent service time ⇒

Proposition

Let R′ denote a set of routes inducing a proper partition of the customers
set Vc . Given any two routes r1, r2 ∈ R′, the success probability of r1 is
independent from the success probability of r2.

This can be used to linearize constraint (3) :

∏

r∈R:xr=1

Pr{ Route r is Successful } ≥ α,
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Chance-constrained model Problem definition

Linearization

Mutually independent service time ⇒

Proposition

Let R′ denote a set of routes inducing a proper partition of the customers
set Vc . Given any two routes r1, r2 ∈ R′, the success probability of r1 is
independent from the success probability of r2.

This can be used to linearize constraint (3) :

∑

r∈R

xr ln(Pr{ Route r is Successful }) ≥ ln(α)
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Chance-constrained model Problem definition

Linearization

Mutually independent service time ⇒

Proposition

Let R′ denote a set of routes inducing a proper partition of the customers
set Vc . Given any two routes r1, r2 ∈ R′, the success probability of r1 is
independent from the success probability of r2.

This can be used to linearize constraint (3) :

∑

r∈R

βrxr ≤ β,

where

βr := − ln(Pr{ Route r is Successful })

β := −ln(α)
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Chance-constrained model Computing the route success probability

Computing the route success probability (1)

Observations :

Consider a route r = (v0, . . . , vq, vq+1) where v0 and vq+1 are 0

Consider t̄vi the random variable for the service starting time at
customer vi

r is successful ⇔ avi ≤ t̄vi ≤ bvi , for all customers in r

To compute the route success probability we need the probability
distributions of t̄vi
t̄vi are sums of independent random variables

Their distribution can be computed by convolution
Under certain hypothesis, convolutions have nice properties (closed
forms, etc )
Not in hour case : Time windows truncate/modify the distributions

⇒ We actually need to carry out computations
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Chance-constrained model Computing the route success probability

Computing the route success probability (2)

Starting service times t̄vi are linked to arrival times tvi :

t̄vi =

{

avi tvi < avi

tvi avi ≤ tvi ≤ bvi

For the corresponding probability mass functions mt
vi
and m̄t

vi

m̄t
vi
(z) =























0 z < avi ,
∑

l≤avi
mt

vi
(l) z = avi ,

mt
vi
(z) avi < z ≤ bvi ,

0 z > bvi .

Observe that for a given vi :

Pr{r is Successful up to vi} =
∑

z∈N

m̄t
vi
(z)
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Chance-constrained model Computing the route success probability

Computing the route success probability (3)

Simple iterative procedure :
1 for (i = 1, . . . , q − 1) do

a Truncation Step : Starting from mt
vi
obtain m̄t

vi

b Convolution Step : Compute mt
vi+1

(z) = (m̄t
vi
∗ms

vi
)(z − tvi ,vi+1

), ∀z ∈ N

2 Compute : Pr{r is successful} =
∑

z∈N m̄t
vq
(z)

Critical point : algorithmic complexity depends on

The quality of the time discretization

The customer time windows widths

The amplitude of the distribution supports
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Computational Results

Instance set

Instances derived from the VRPTW database of Solomon (1987) :

We build 4 instance families :
1 Basic :

Symmetric triangular distributions
Median corresponding to original values : 100 for R and RC, 900 for C
Support : [80, 120] for R and RC, [700, 1100] for C.
Minimum success probability : α = 95%

2 Low-probability :

Similar to Basic case, but the minimum success probability is α = 85%

3 Large-support :

Similar to Basic case, but larger support : [50, 150] for R and RC,
[450, 1350] for C

4 Positive-skewed :

Similar to Large-support case, but different median values : 70 for R
and RC, 630 for C

Capacity and demand are disregarded
Number of customers : 25 and 50 for R1, RC1, C1 ; 25 for R2, RC2,
C2. (85 X 4 = 340 Total)
Max CPU time : 5h on Intel i7-2600 3.40GHz, 16G RAM
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Computational Results

Performance on benchmark instances (1)

Number of optimally solved instances (over 85) :

 35

 40

 45

 50

 55

 60

 65

 70

 75

 3600  7200  10800  14400  18000

nS
ol

ve
d

Time (seconds)

 Large-support 
 Low-probability 

 Positive-skewed 
 Basic 

Instance families with larger support are more difficult
Approx. 80% of the instances are solved within the first hour
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Computational Results

Deterministic VS Stochastic Model (1)

Deterministic (Median values ) VS Stochastic (Large-support)

class PercCostDAvg PercVehDAvg PercSuccDAvg count
1 -6.8 -56.4 -44.91242 39
2 -0.1 0.0 -5.12083 15

-5.0 -40.7 -33.85920 54

General tendency : modest cost decrease ⇐⇒ consistent decrease of
success probability ( −5.0 ⇐⇒ −33.9%)

Some differences :

Family 1 : −6.8 ⇐⇒ −44.9%
Family 2 : 0.1 ⇐⇒ 5%

Stochastic model is convenient

Fausto Errico fausto.errico@cirrelt.ca 28



Computational Results

Deterministic VS Stochastic Model (2)

Deterministic (Worst-case values ) VS Stochastic ( Large-support)

class PercCostDAvg PercVehDAvg PercSuccDAvg count
1 9.6 74.4 2.93339 39
2 1.7 0.0 0.06861 15

7.4 53.7 2.13762 54

General tendency : relevant cost increase ⇐⇒ small increase of
success probability ( +7.4 ⇐⇒ +2.1%)

Some differences :

Family 1 : +9.6 ⇐⇒ +2.9%
Family 1 : +1.7 ⇐⇒ +0.07%

Stochastic model is still convenient
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Conclusions and perspectives 



Stochastic Vehicle Routing: an Application of  
Stochastic Optimization Models 

Conclusion and perspectives 
 Stochastic vehicle routing is a rich and promising 

research area. 
 Much work remains to be done in the area of recourse 

definition. 
 SVRP models and solution techniques may also be useful 

for tackling problems that are not really stochastic, but 
which exhibit similar structures 

 Up to now, very little work on problems with stochastic 
travel and service times, while one may argue that travel 
or service times are uncertain in most routing problems! 

 Correlation between uncertain parameters is possibly a 
major stumbling block in many application areas, but 
almost no one seems to work on ways to deal with it. 
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