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INTRODUCTION

Route choice models play an important role in different
transport related applications (e.g. traffic simulation and
evaluation of infrastructure investments)
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INTRODUCTION

Choice set of three paths Cn = {1,2,3}
Travel time is static and deterministic and is the only
attribute observed by the modeller

V1 =V2 =V3 =Vj = βTj

Static logit model U j =Vj + ε j

P(1|Cn) = P(2|Cn) = P(3|Cn) =
eV1

∑ j∈Cn eVj
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INTRODUCTION

Transport networks are large and there are many alternatives
for each origin-destination pair

Several challenges associated with route choice modelling:
choice sets are unknown and path utilities are correlated

Addressing the choice set issue: we can reformulate the path
choice problem as a sequence of link choices, we call it
recursive logit (Fosgerau et al., 2013, Mai et al. 2015)

Recursive logit for a static and deterministic network is a
simple case of a dynamic discrete choice model
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RECURSIVE LOGIT

Utilities are associated with links a ∈ A and the deterministic
part is −Ta, here -4 (upper link) and -2 for the others

Logit over outgoing links at origin e−2

e−2+e−4 = 0.88

Recursive logit e−2−0.57

e−2−0.57+e−4 = 0.50
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RECURSIVE LOGIT

Directed connected network G = (A,V )

Deterministic attributes

A state k ∈ A is a link in the network so that turn attributes
can be included

Choice of one outgoing link (action) a ∈ A(k) at the sink
node of k

Path: (k0, ..,kI) with ki+1 ∈ A(ki) for all i < I
From now on

All equations are destination specific
Notation for individuals omitted
Static network is assumed
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RECURSIVE LOGIT

Infinite horizon problem with an absorbing state d
(destination)

Ã = A∪d

u(a|k) = v(a|k)+µε(a), ε(a) i.i.d. EV type 1

v(a|k) = v(xa|k;β )< 0 ∀a,k ∈ A, v(d|k) = 0
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RECURSIVE LOGIT

Traveler chooses next link given current state, stochastic
process having Markov property

Next state given with certainty by the action

Traveler observes ε(a) ∀a ∈ A(k), chooses action a that
maximizes sum of u(a|k) and expected maximum downstream
utility V (a)
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RECURSIVE LOGIT

Bellman equations

V (k) = E
[

max
a∈A(k)

(v(a|k)+V (a)+µε(a))
]
∀ k ∈ A

Infinite horizon but no discounting!

intermodal.iro.umontreal.ca |Page 10/42



RECURSIVE LOGIT

Probability of choosing link a given state k

P(a|k) = e
1
µ
(v(a|k)+V (a))

∑a′∈A(k) e
1
µ
(v(a′|k)+V (a′))
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RECURSIVE LOGIT

Expected maximum utility corresponds to the ”logsum”

V (k) =

{
µ ln∑a∈A δ (a|k)e

1
µ
(v(a|k)+V (a)) ∀k ∈ A

0 k = d

δ (a|k) = 1 if a ∈ A(k) and zero otherwise

Note that denominator in P(a|k) is e
1
µ

V (k)

intermodal.iro.umontreal.ca |Page 12/42



PROPERTIES

Solving the Bellman equations

e
1
µ

V (k) =

{
∑a∈A δ (a|k)e

1
µ
(v(a|k)+V (a)) ∀ k ∈ A,

1 k = d
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PROPERTIES

System of linear equations

z = Mz+b⇔ (I−M)z = b

z (|Ã|×1), zk = e
1
µ

V (k)

b (|Ã|×1), bk = 0 ∀k ∈ A, bk = 1,k = d

M (|Ã|× |Ã|)

Mka =

{
δ (a|k)e

1
µ

v(a|k) ∀a ∈ Ã, ∀k ∈ A
0 otherwise
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PROPERTIES

The system has a solution if (I−M) is invertible which
depends on the balance between the number of paths that
connect nodes in the network and the size of 1

µ
v(a|k)

1
µ

v(a|k) are network dependent since they are scaled to the
variance of the error terms

Dense networks and many alternative paths do not necessarily
imply that I−M is ill-conditioned
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PROPERTIES

Path probabilities

Observation σ = {ki}I
i=0, k0 is the origin and kI = d

By the Markov property P(σ) = ∏
I−1
i=0 P(ki+1|ki)

P(σ) =
I−1

∏
i=0

e
1
µ
(v(ki+1|ki)+V (ki+1)−V (ki))

= e−
1
µ

V (k0)
I−1

∏
i=0

e
1
µ

v(ki+1|ki)

Denote v(σ) = ∑
I−1
i=0 v(ki+1|ki)
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PROPERTIES

P(σ) =
e

1
µ

v(σ)

e
1
µ

V (k0)
=

e
1
µ

v(σ)

∑σ ′∈Ω e
1
µ

v(σ ′)

Path based multinomial logit model with an infinite number of
alternatives

Ω set of all paths (including those with loops)

IIA property holds over paths
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ESTIMATION

A sample of observations of (different) travellers making path
choices σn, n = 1, . . . ,N, e.g. collected by GPS

Maximum likelihood estimation

max
β

LLN(β ) =
1
N

N

∑
n=1

lnP(σn;β ) (1)
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ESTIMATION

Log-likelihood function

LL(β ) = ln
N

∏
n=1

P(σn;β ) =
1
µ

N

∑
n=1

Tn−1

∑
t=0

v(kt+1|kt ;β )−V (k0;β )

Unlike a static logit model we need to solve the value
functions in order to evaluate choice probabilities

A non-linear optimization algorithm is used to search over the
parameter space

We use the NFXP algorithm since the value functions are not
expensive to compute
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APPLICATION

Borlänge network (3077 nodes, 7459 links, 21452 link pairs)

The value functions can be solved using a direct solver
(MATLAB)

Validation using synthetic data

Estimation based on real observations
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APPLICATION – VALIDATION

Instantaneous utilities

v(a|k) = βT T T Ta +βLT LTa|k +βLCLCa +βUTUTa|k

Travel time in minutes (TT)

Left turn dummy (LT) for turns larger than 40 degrees

Link constant (LC) to penalize paths with many crossings

U-turn dummy (UT) to remove u-turns from the network,
fixed to -20
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APPLICATION – VALIDATION

One origin-destination pair in Borlänge

10 samples of 500 paths observations

Chosen parameters: βT T =−2, βLT =−1, βLC =−1 and
βUT =−20
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APPLICATION – VALIDATION

Sample β̂T T Std. Err. β̂LT Std. Err. β̂LC Std. Err.
1 -1.91 0.21 -1.02 0.09 -1.07 0.06
2 -1.97 0.22 -0.99 0.09 -1.04 0.06
3 -1.80 0.21 -1.09 0.09 -1.07 0.06
4 -2.38 0.26 -0.88 0.09 -1.01 0.06
5 -2.20 0.24 -0.96 0.08 -0.93 0.05
6 -2.30 0.26 -0.96 0.09 -0.96 0.06
7 -1.69 0.18 -1.00 0.08 -1.11 0.06
8 -1.84 0.20 -1.04 0.08 -1.04 0.05
9 -2.40 0.29 -1.05 0.09 -0.89 0.06

10 -1.88 0.20 -0.99 0.08 -0.976 0.05

Average -2.04 0.23 -1.00 0.09 -1.01 0.06
Std. Err. 0.26 0.06 0.07
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APPLICATION – REAL DATA

Real data: 1832 path observations, 466 destinations and over
37000 link choices

Comparison with path based logit models
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Parameters RL-LS RL PSL PL

β̂T T -3.060 -2.494 -2.738 -2.431
Rob. Std. Err. 0.103 0.098 0.086 0.083
Rob. t-test (0) -27.709 -25.449 -31.837 -29.289

β̂LT -1.057 -0.933 -1.000 -0.920
Rob. Std. Err. 0.029 0.030 0.027 0.029
Rob. t-test (0) -36.448 -31.100 -37.037 -31.724

β̂LC -0.353 -0.411 -0.545 -0.429
Rob. Std. Err. 0.011 0.013 0.012 0.013
Rob. t-test (0) -32.091 -31.615 -45.417 -33.000

β̂UT -4.531 -4.459 -4.366 -4.375
Rob. Std. Err. 0.126 0.114 0.118 0.119
Rob. t-test (0) -35.960 -39.114 -37.000 -36.765

β̂LS and β̂PS -0.227 1.461
Rob. Std. Err. 0.013 0.082
Rob. t-test (0) -17.462 17.817

L̂LN(β̂ ) -3.300 -3.441 -1.601 -1.688
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CROSS VALIDATION

Cross validation approach: 80% for estimation, 20% for
prediction

40 holdout samples of the same size taken from the real
sample

Log-likelihood loss, averaged over holdout samples

errp =
1
p

p

∑
i=1

erri ∀1≤ p≤ 40

where erri is the log-likelihood loss for holdout sample i
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CROSS VALIDATION
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BEYOND THE RECURSIVE LOGIT...

Following Aguirregabiria and Mira (2010)

Individuals make sequential decisions, are forward looking and
maximize expected intertemporal utility

Parameters to be estimated describe decision makers
preferences and beliefs about the future

intermodal.iro.umontreal.ca |Page 28/42



INTRODUCTION

We assume that time is discretized t = 1,2, . . . ,T and the
horizon T can be finite of infinite

A vector of state variables snt for individual n and time t
describes all relevant information for the decision of interest
known at t

n takes an action/choice ant ∈ Ant
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INTRODUCTION

Instantaneous/current utility of action ant is u(ant ,snt ;β ) (time
separability is assumed)

An individual’s preferences over time are then represented by

T

∑
j=0

ρ
ju(an,t+ j,sn,t+ j;β )

where ρ ∈ (0,1) is a discount factor (ρ is assumed constant
over time)
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INTRODUCTION

The decision at t affects the values of future state variables
and these values are uncertain to the individual

The evolution of future states is represented by a Markov
transition distribution function F(sn,t+1|ant ,snt)
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INTRODUCTION

At each time t, an individual observes snt and chooses
ant ∈ Ant to maximize expected utility

E

(
T−t

∑
j=0

ρ
ju(an,t+ j,sn,t+ j;β )|ant ,snt

)
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INTRODUCTION

Value function recursively defined by Bellman’s equation

V (snt) = max
a∈Ant

[
u(a,snt ;β )+ρ

∫
V (sn,t+1)dF(sn,t+1|a,snt)

]
Parameters to be estimated can be included in the
instantaneous utilities and the transition probabilities in
addition to the discount factor

intermodal.iro.umontreal.ca |Page 33/42



DATA

Panel data of n = 1, . . . ,N individuals

Actions (choice variable) ant are observed

snt = (xnt ,εnt) where attributes in xnt are observed

Data {ant ,xnt : n = 1, . . . ,N; t = 1, . . . ,Tn}
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RUST’S MODEL

Rust (1987) formulated a dynamic discrete choice model
which has several similarities with a static logit

We present these assumptions informally (see e.g.
Aguirregabiria and Mira, 2010, for details)
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RUST’S MODEL

Instantaneous utilities are additively separable in observed and
unobserved components u(a,snt) = v(a,xnt)+ εnt(a)

Random terms εnt(a) are i.i.d. Extreme value type I with zero
mean and are independent over time, individuals and actions
and are also independent of everything else in the model

xit ∈ X is discrete and finite

These assumptions imply that
F(sn,t+1|ant ,snt) = Fε(εn,t+1)Fx(xn,t+1|ant ,xnt)
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RUST’S MODEL

The “integrated value function” V̄ (xnt)≡
∫

V (xnt ,εnt)dF(εnt) is the
unique solution to the “integrated Bellman equation”

V̄ (xnt)=
∫

max
a∈Ant

[
v(a,xnt ;β )+ εnt(a)+ρ ∑

xn,t+1

V̄ (xn,t+1) fx(xn,t+1|a,xnt)

]
dF(εnt)

To simplify coming formulae, we define a choice specific value
function

V (a,xnt ;β ) = v(a,xnt ;β )+ εnt(a)+ρ ∑
xn,t+1

V̄ (xn,t+1) fx(xn,t+1|a,xnt)

intermodal.iro.umontreal.ca |Page 37/42



RUST’S MODEL

We now define the probability of choosing an action at a
given state

Individuals maximize instantaneous and expected future
utilities

α(xnt ,εnt) = arg max
a∈Ant

V (a,xnt ;β )

We can obtain choice probabilities as in the static logit case
by integrating out the random terms
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RUST’S MODEL

Probability of choosing action a given observed state variables
xnt

P(a|xnt ;β ) =
exp[V (a,xnt ;β )]

∑ j∈Ant exp[V ( j,xnt ;β )]

Given the logit model, the expected maximum utility is the
logsum so we obtain a familiar expression for the integrated
value function

V̄ (xnt) = ln

(
∑

j∈Ant

exp

[
v(a,xnt)+ρ ∑

xi,t+1

V̄ (xn,t+1) fx(xn,t+1|a,xnt)

])
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CONCLUDING REMARKS

In the case of recursive logit the value functions are easy solve
because the next state is deterministically given by the action

When this is not the case, the value functions can be more
difficult and time consuming to compute

NFXP algorithm may be too expensive but alternatives exist
(e.g. Hotz and Miller, 1993, Aguirregabiria and Mira, 2002)

Another lecture focuses on the estimation problem
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