





Mikael Rönnqvist

The Norwegian School of Economics and Business Administration The Forestry Research Institute of Sweden (Skogforsk)

Spring School on Combinatorial Optimization in Logistics Université de Montréal, May 17-20, 2010



- Introduction to the forest industry
- Decision support systems
- Applications
  - Online operations: *cutting problem*
  - Operational/ Short term: routing and production
  - Tactical/ Medium term: *transportation, harvesting / routing, StormOpt, Forest fuel*
  - Strategic/ Long term: *logistics and supply chain design, terminal structure, train system*
- Concluding remarks

# Introduction to forest industry and planning problems







#### **Divergent** flows



# Unbalanced annual harvesting



#### Forest transportation work

Average distances travelled were: 88 kilometres for road, 272 kilometres for rail and 510 km by sea between Swedish ports.



Price trends for sawlogs of scots pine and Norway spruce, delivery logs, in the price level of 2008 (deflated with CPI)



See the capter text.

Källa: SDC; Skogsstyrelsen, Analysenheten. Source: SDC; Swedish Forest Agency, Analysis Division. Sveriges officiella statistik

|--|

| Skogsmark                                                                | Agargrupp<br>Ownership<br>category | <b>)</b><br>D  |                                 |           |            |           |          |             |            |
|--------------------------------------------------------------------------|------------------------------------|----------------|---------------------------------|-----------|------------|-----------|----------|-------------|------------|
| i storleksklasser                                                        | Fysisk                             | Dödsbo         | Kommuner                        | Svenska   | Aktiebolag | Staten    | Övriga   | Okänd ägar- | Samtliga   |
| Size of forest                                                           | person                             | Estate of a    | och landsting<br>Municipalities | kyrkan    | Company    | State     | Others   | kategori    | ägare      |
| land                                                                     | Physical                           | deceased       | &                               | Church    | forest     |           |          | Unknown     | All owners |
|                                                                          | person                             | person         | county counci                   | ls        |            |           |          | category    |            |
| ha hectare                                                               | Antal taxe                         | ringsenheter N | umber of asses                  | sed units |            |           |          |             |            |
| 1-9                                                                      | 82 90                              | 8 2.08         | 0 1984                          | 4 102     | 792        | 2 291     | 1 961    | 16          | § 90 134   |
| 10-19                                                                    | 44 87                              | 5 96           | 6 955                           | 5 71      | 357        | 7 162     | <u> </u> | 16          | 6 48 087   |
| 20-49                                                                    | 6276                               | 1 117          | 2 963                           | 3 88      | 383        | 3 217     | 7 875    | 23          | 66 482     |
| 50-99                                                                    | 36 82                              | 9 63           | 4 582                           | 2 53      | 321        | 156       | 5 730    | 21          | 39 326     |
| 100-399                                                                  | 24 88                              | 1 40           | 7 552                           | 2 42      | 516        | 6 158     | 3 1 062  | 57          | 27 675     |
| 400-999                                                                  | 1 45                               | 0 2            | 5 98                            | 37        | 240        | ) 56      | 323      | 13          | 3 2 212    |
| 1000-                                                                    | 17                                 | 6              | 4 3 <sup>-</sup>                | 17        | 626        | 6 52      | 2 196    | 1           | 1 093      |
| Summa Total                                                              | 253 88                             | 0 528          | 8 5 16                          | 5 370     | 3 235      | 5 1 0 9 2 | 2 5 832  | 147         | 275 009    |
| Information from the<br>General Assessment<br>of Real Estates in<br>2005 |                                    |                |                                 |           |            |           |          |             |            |
| Källa: SCB<br>Source: Statisics<br>Sweden                                | 92,39                              | % 1,99         | % 1,9%                          | 6 0,1%    | 1,2%       | 6 0,4%    | 2,1%     | 0,1%        | 5 100,0%   |





# Production (paper) first quarter 2009



INTERNATIONAL (A) PAPER

#### International Paper

- United States
  - 18 pulp, paper and packaging mills
  - 94 converting and packaging plants
  - 5 wood products facilities
  - 250 distribution branches
- Europe, Asia and South America
  - 8 pulp and paper mills
  - 44 converting and packaging mills

Top 5 International paper (~\$22 B) Weyerhaeuser (~ \$20 B) Georgia Pacific (~ \$20 B) Stora Enso (~ \$15 B) Kimberly Clark (~ \$15 B)

# Paper consumption, Sweden



# CO2 emissions – over a life cycle



Källa: SLU (Sveriges Lantbruks Universitet)

# Swedish forest inventory (standing)



## Decision support systems







Fig. 2. Software modules covering the SC planning matrix (Meyr et al., 2002, p. 99).

|                                                                                                        | Procurement                                                                                                                                                                                                                                                                                                                                                                                                           | Production                                                                                                                                                                                                                                                                                                                                                                         | Distribution                                                                                                                                                                                                                                                                                               | Sales                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Strategic                                                                                              | <ul> <li>Wood procurement strategy<br/>(private vs public land)</li> <li>Forest land acquisitions and<br/>harvesting contracts</li> <li>Silvicultural regime and<br/>regeneration strategies</li> <li>Harvesting and transportation<br/>technology and capacity<br/>investment</li> <li>Transportation and investment<br/>strategies (e.g., roads,<br/>construction, trucks, wagons,<br/>terminals, ships)</li> </ul> | <ul> <li>Location decisions</li> <li>Outsourcing decisions</li> <li>Technology and<br/>capacity investments</li> <li>Allocation of product<br/>families to facilities</li> <li>Order penetration point<br/>strategy</li> <li>Investments in<br/>information technology<br/>and planning systems<br/>(e.g., advance planning<br/>and scheduling technologies,<br/>ships)</li> </ul> | Warehouse location     Allocation of     markets/customers to     warehouses     Logistics resource         investments (e.g.,     warehouses, handling)     Contracts with     logistics providers     Investments in     information technology and     planning systems (e.g.,     warehouse execution) | <ul> <li>Selection of markets</li> <li>(e.g., location, segment)</li> <li>Customer segmentation</li> <li>Product-solution portfolio</li> <li>Pricing strategy</li> <li>Service strategy</li> <li>Contracts</li> <li>Investments in<br/>information technology and<br/>planning systems (e.g.,<br/>On-line tracking systems,<br/>CRM)</li> </ul>                                                     |
| Tactical                                                                                               | <ul> <li>Sourcing plan (log class<br/>planning)</li> <li>Aggregate harvesting<br/>planning</li> <li>Route definition and<br/>transshipment yard location<br/>and planning</li> <li>Allocation of harvesting and<br/>transportation equipment to<br/>cutting blocks</li> <li>Allocation of products/ blocks to<br/>mills</li> <li>Yard layout design</li> <li>Log yard management<br/>policies</li> </ul>              | <ul> <li>Campaign duration</li> <li>Product sequencing during<br/>the campaigns</li> <li>Lot-sizing</li> <li>Outsourcing planning</li> <li>Seasonal inventory<br/>target</li> <li>Parent roll assortment<br/>optimization</li> <li>Temporary mill<br/>shutdowns</li> </ul>                                                                                                         | <ul> <li>Warehouse<br/>management policies<br/>(e.g., dock management)</li> <li>Seasonal inventory<br/>target at DCs</li> <li>Routing (Ship, train and<br/>truck)</li> <li>3PL contracts</li> </ul>                                                                                                        | <ul> <li>Aggregate demand<br/>planning per segment</li> <li>Customer contracts</li> <li>Demand forecasting,<br/>safety stocks</li> <li>Available to promise<br/>aggregate need and<br/>planning</li> <li>Available to promise<br/>allocation rules<br/>(including rationing<br/>rules and substitution<br/>rules)</li> <li>Allocation of products<br/>and customers to mills<br/>and DCs</li> </ul> |
| Operational • Detailed log supply planning<br>• Forest to mill: daily carrier<br>selection and routing |                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Daily production plans for<br/>pulp mills/paper machines/<br/>winders/sheeters</li> <li>Mill to converter/DC/<br/>customer: daily carrier<br/>selection and routing</li> <li>Roll-cutting</li> <li>Process control</li> </ul>                                                                                                                                             | <ul> <li>Warehouse/DC inventory<br/>management.</li> <li>DC to customer:<br/>daily carrier selection and<br/>routing</li> <li>Vehicle loads</li> </ul>                                                                                                                                                     | <ul> <li>Available to promise<br/>consumption</li> <li>Rationing</li> <li>Online ordering</li> <li>Customer inventory<br/>management and<br/>replenishment</li> </ul>                                                                                                                                                                                                                               |

# DSS structure: input database, analytical tool and presentation tool



#### Reality expressed into an OR model



# Structure of analytical tool







Solution time



DSS at Skogforsk (Forest Research Institute of Sweden)

- Planning systems
  - Base: national road database, operations research, company data & collaboration, server solution with GIS
  - FlowOpt (flow & inventory, trucks, trains, ships, terminals, collaboration, *robustness*)
  - RuttOpt (detailed routing, queuing)
  - FuelOpt (forest fuel, chipping operations)
  - VägRust (road investments, flows & inventory, robustness)
  - Resource planning (harvesting, scheduling)
  - New: ChipOpt (tactical and operational harvest planning)

# Online operations – Cutting applications









Problem can be solved as a longest path problem.

- 1. Discretize into elements which forms nodes in a graph.
- 2. Introduce arcs while checking feasibility where it is possible to cut products.
- 3. Solve longest path using e.g. Dijkstras algorithm

Use a price list to set relative prices of products

## Log tally

|          |    |    |     |             |           |              |      |      |       | Та         | lly al | t 177                |      |      |      |
|----------|----|----|-----|-------------|-----------|--------------|------|------|-------|------------|--------|----------------------|------|------|------|
|          |    |    |     |             |           |              | Т    | ally | / alt | 555        | ;      |                      |      | 55   | 56   |
|          |    |    |     |             |           | ۲эШ          | v al | + 10 | 15    |            |        | - 55                 | 56   | 8    | 151  |
|          |    |    | 1   | 40          | 40        |              | y ai |      | 5     | <b>F</b> 4 |        | 50 8                 | 151  | 252  | 361  |
|          |    |    | -   | 4X<br>T - I | <u>49</u> | 50<br>14 4 0 | 51   | -52  | 53    | 54         | 55     | 56 0                 | 261  | 627  | 515  |
|          |    |    |     | I al        | iy a      | πΊυ          |      |      |       |            | 11     | 151 -52              | 301  | 1189 | 616  |
|          |    | 48 | 49  | 50          | 51        | 52           | 53   | 54   | 55    | 56         | 133    | 361 <mark>327</mark> | 515  | 1646 | 1564 |
|          | 12 | 9  | 11  | 219         | 58        | 5            | 1    | 2    | 8     | 151        | 326    | 515 89               | 616  | 1692 | 1530 |
|          | 14 | 27 | 37  | 505         | 94        | 31           | 8    | 33   | 252   | 361        | 189    | 616 346              | 1564 | 1014 | 1056 |
|          | 16 | 46 | 53  | 518         | 62        | 102          | 51   | 71   | 627   | 515        | 1100   | 564 92               | 1530 | 1314 | 1030 |
| Diamatan | 18 | 44 | 134 | 551         | 66        | 165          | 60   | 115  | 1189  | 616        | 1212   | 122 14               | 1056 | 1739 | 926  |
| Diameter | 20 | 67 | 188 | 1241        | 131       | 164          | 130  | 143  | 1646  | 1564       | 1212   | 400 700              | 000  | 1630 | 442  |
|          | 22 | 30 | 86  | 765         | 103       | 155          | 63   | 151  | 1692  | 1530       | 815    | 133 39               | 926  | 1364 | 517  |
|          | 24 | 19 | 72  | 443         | 73        | 156          | 64   | 175  | 1914  | 1056       | 532    | 926 30               | 442  | 1122 | 322  |
|          | 26 | 65 | 99  | 605         | 63        | 152          | 84   | 126  | 1739  | 926        | 233    | 442 <mark>)64</mark> | 517  |      |      |
|          | 28 | 23 | 129 | 525         | 42        | 130          | 88   | 125  | 1630  | 442        | 365    | 517 22               | 322  |      |      |
|          | 30 | 6  | 18  | 244         | 23        | 86           | 57   | 80   | 1364  | 517        | 122    | 322                  |      |      |      |
|          | 32 | 4  | 18  | 273         | 43        | 73           | 79   | 73   | 1122  | 322        |        |                      |      |      |      |

Length

# 2-dimensional packing at sawmills













#### Max 10 products



#### Max 100 products



# Models, methods and challenges

- Cutting applications with guilliotine cuts often includes Dynamic programming models /methods
- Special heuristics for general cutting applications
- Challenges:
  - Collect detailed information online (e.g. image processing)
  - Co-ordinate bucking (i.e. log cutting) to match actual online demand
  - Applications with non-guilliotine cuts

# Transportation







# "Classical" transportation problem





 $\begin{aligned} & \text{Mathematical model} - \\ & \text{backhaulage problem} \\ & \text{min} \sum_{i \in I} \sum_{j \in J} \sum_{k \in K} c_{ijk} x_{ijk} + \sum_{l \in L} d_l y_l \\ & \sum_{j \in J} x_{ijk} + \sum_{l \in L} a_{ikl} y_l \leq s_{ik}, \ \forall \ i,k \quad (\text{supply at harvest areas}) \\ & \sum_{i \in I} x_{ijk} + \sum_{l \in L} b_{jkl} y_l = d_{jk}, \ \forall \ j,k \quad (\text{demand at industries}) \\ & x_{ijk}, y_l \geq 0, \ \forall \ i \in I, j \in J, k \in K, l \in L \end{aligned}$ 

#### Forest vehicle routing problem



## quizz

- Given a truck, starting and ending point, what is the correct transportation cost?
- Answer: it depends ...

#### Route selection with road database



- Shortest path?
- Quickest path?
- Best road class?
- Driven route is based on weighting of attributes

Road length, Speed limit, Road class, Bearing class, Terrain class, Road width, Ownership, Special routes/links (total of 55 weights)



## Passing routes in or around cities



#### TP routes: routes in cities, 18 industries have TP routes



#### Key-routes: harvest areas and industries



#### Key routes: geographical distribution



| Survey   | North | Qbera | South | Sweden |
|----------|-------|-------|-------|--------|
| Survey 1 | 67    | 104   | 50    | 221    |
| Survey 2 | 125   | 75    | 85    | 285    |
| Survey 3 | 197   | 272   | 315   | 784    |
| Total    | 389   | 451   | 450   | 1290   |

#### Inverse shortest path problem

| Decision variable | Definition                                                              |
|-------------------|-------------------------------------------------------------------------|
| $w_k$             | weight of parameter $k$                                                 |
| $x_{ij}$          | 1 if shortest path $j$ associated to key route $i$ is best, 0 otherwise |
| $y_i$             | 1 if key route $i$ is best, 0 otherwise                                 |

$$\max \ z = \sum_{i \in I} c_i y_i - \sum_{i \in I} \sum_{j \in J_i} \ell_{ij} x_{ij}$$
s.t. 
$$\sum_{k \in K} (a_{ik} - b_{ijk}) w_k \le M(1 - y_i) + \sum_{j' \in J_i} M x_{ij'}, \qquad \forall \ i \in I, j \in J_i$$
(1)
$$\sum_{k \in K} (b_{ijk} - b_{imk}) w_k \le M(1 - x_{ij}) + M y_i + \sum_{j' \in J_i: j' \neq j} M x_{ij'}, \qquad \forall \ i \in I, j, m \in J_i(j < m)$$
(2)
$$y_i + \sum_{j \in J_i} x_{ij} = 1, \qquad \forall \ i \in I$$
(3)

$$\begin{array}{rcl}
w_k &\leq & w_l, \\
y_i, x_{ij} &\in & \{0, 1\}, \\
\end{array} \qquad \qquad \qquad \forall k \in K, l \in L_k \\
\forall i \in I, j \in J_i \\
\end{array} \tag{4}$$

# "Standard road" comparison

| Standard road |               | Sweden I | April 08 | KV0.2 | KV1.0 | $\mathrm{KV2}$ |
|---------------|---------------|----------|----------|-------|-------|----------------|
| Road class    | 0             | 100      | 100      | 100   | 100   | 100            |
|               | 1             | 100      | 100      | 100   | 100   | 100            |
|               | 2             | 100      | 100      | 100   | 101   | 100            |
|               | 3             | 110      | 117      | 111   | 111   | 107            |
|               | 4             | 124      | 139      | 137   | 137   | 135            |
|               | 5             | 163      | 212      | 171   | 172   | 168            |
|               | 6             | 231      | 287      | 171   | 163   | 169            |
|               | 7             | 187      | 424      | 333   | 358   | 358            |
|               | 8             | 345      | 744      | 540   | 560   | 558            |
|               | 9             | 527      | 963      | 762   | 805   | 730            |
|               | Timber route  | -        | -        | 124   | 124   | 133            |
|               | Passing route | -        | -        | -     | -     | 88             |

#### BeLi1

#### Key routes – with one weight setting in three geographical regions

| Nord                      |                             |          |          |        |      |                |                 |
|---------------------------|-----------------------------|----------|----------|--------|------|----------------|-----------------|
| HOIU                      | KV2.0                       |          |          | Sweden | Nord | Qbera          | Syd             |
|                           | No. of shortest paths (SP)  | 1050     | 340      | 358    | 352  |                |                 |
|                           | % SP equal with key rout    | 81.7     | 88.5     | 79.4   | 78.2 |                |                 |
| Contraction of the second | % distance of SP relative [ | 99.9     | 100.3    | 99.9   | 99.6 |                |                 |
|                           | average absolute deviation  | 1.22     | 0.73     | 1.19   | 1.78 |                |                 |
|                           | % common route, SP and      | 93.9     | 94.1     | 94.2   | 92.6 |                |                 |
| era                       |                             |          |          |        |      |                |                 |
| ALLE                      |                             |          |          |        |      |                |                 |
|                           |                             | Sweden I | April 08 | KV0.2  | KV1  | .0 KV          | 2.0             |
|                           | No. $SP = key routes$       | 794      | 869      | 912    | 96   | 6 10           | $\overline{50}$ |
| 1                         | SP = key routes             | 61.79    | 67.63    | 70.97  | 75.1 | .8 81.         | .71             |
| unter -                   | distance                    | 99.10    | 101.68   | 99.48  | 99.9 | 99.            | .86             |
|                           | average deviation           | 2.31     | 2.92     | 1.82   | 1.5  | 51 - 1         | 22              |
|                           | common route                | 88.89    | 89.44    | 91.00  | 92.3 | <b>3</b> 8 93. | .87             |

#### Slide 57

Qber

Syd

BeLi1

Hela Sverige bör vara Sweden i tabellen längst ner! Bertil Lidén; 2009-06-17



# Operational planning – Routing





# Standard vehicle routing problem



# Challenges

- No balance between supply and demand
- No destination given
- No full loads are available
- Multiple pickups necessary
- Different truck type
- Flexible change of driver
- Time estimates of routes
- Multiple time periods
- Accumulating demands
- Avoid cleaning

# Gantt schedule for a day

| GANTT         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Tisdag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Regin INRIALE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - 81264172    | <b>249 24 249 24 24967 24 24969 2 249 24 249 24 24975 2 24 24 24 24 24 24 24</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 🖃 HRY 649     | <b>249 24 24989 24 24 24 24 24 24 24 24 24 24 24 24 24 </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 🖃 SJX097      | 25 25 2 25008 25 25010 2 25 25 25 2 2 25 25 2 2 25 25 2 2 25 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 🖃 SKC 559     | <b>2 25 2 25 25 25 25 25 2 25 2 5</b> 2 <b>2</b> 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 🖃 SKO 701     | 25 25 25 25 2 2 2 25 25 0 4 3 2 25 0 5 0 2 2 2 25 25 0 2 2 25 25 0 2 2 25 25 0 2 2 25 25 0 3 2 2 5 2 5 0 6 3 2 2 5 2 5 0 6 3 2 2 5 2 5 0 6 3 2 2 5 2 5 0 6 3 2 2 5 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 2 5 0 6 3 2 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 |
| 🖃 SMM 996     | <b>25073 25 25075 2 250</b> 25078 2 <b>251 25 25 25082 2 250 25 250 2 2 2 25 2 25 </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 🖃 SNH 338     | <b>25 25 2510</b> 25 <b>25103</b> 2 <b>2510</b> 2 <b>25 25 25 2 2 2 25 25115</b> 2 <b>25 25 25 25 25 25 25 25 25 25 25 25 25 2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 🖃 TLZ 395     | <b>2</b> 25 251 2 251 2 251 2 251 2 25 2 2 25 2 2 251 2 251 5 25 25 25 25 25 25 25 25 25 25 25 25 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 🖃 TSL 871     | 25 25168 22 25170 25 25174 2 25176 25 25 2 2 2 2 25 25 25 25 25 2 25 25 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 🖃 TSN 577     | <b>2 25 251 25 25201 25 25203 2 25205 25206 2 2 25 25210 2 25 25215 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 25 2 2 25 2 2 2 2 2 2 2 2 2 2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 🖃 TTD 931     | <b>252 25 252 25 2 25 2 25 2 2 25231 25 25233 2 252 3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 🖃 UDS 777     | <b>25 25 25 2 2524 25 25243 2 252 25 25 25 2 252 2 25 25 25 25 25 2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| •             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## Gantt schedule for three days

| GANTT     |        |
|-----------|--------|
| PagN      | May 05 |
| Regiv     |        |
|           |        |
| B1264172  |        |
| 🖃 HRY 649 |        |
| 🖃 SJX097  |        |
| 🖃 SKO 701 |        |
| 🖃 SMM 996 |        |
| 🖃 SNH 338 |        |
| 🖃 TLZ 395 |        |
| 🖃 TSL 871 |        |
| 🖃 TSN 577 |        |
| 🖃 UDS 777 |        |
| 🖃 SKC 559 |        |
| 🖃 TTD 931 |        |
| <b>Ⅰ</b>  |        |

# Driving times – real and SNVDB



## Industrial demand



# Two – phase method

• Idea:

– Use an efficient tabu search algorithm to form routes

- Phase 1:
  - Construct transport nodes mainly by solving a destination problem (LP) and form loads taken from supply point(s) to demand point
- Phase 2:
  - Use an extended and modified tabu search to construct routes where e.g. time windows and excess supply is taken care of

# Transport nodes (example)











Table 1. Information on the case studies.

|                                     | Case 1  | Case 2  | Case 3  | Case 4  |
|-------------------------------------|---------|---------|---------|---------|
| Number of trucks                    | 12      | 110     | 10      | 10      |
| Number of hauliers (transporters)   | 8       | 79      | 3       | 8       |
| Number of industries (demand nodes) | 22      | 74      | 8       | 19      |
| Number of demand points             | 24      | 113     | 8       | 19      |
| Number of supply nodes              | 167     | 665     | 26      | 65      |
| Number of supply points             | 410     | 2 531   | 48      | 98      |
| Number of time periods (days)       | 3       | 5       | 3       | 3       |
| Total demand volume (tons)          | 7 5 1 1 | 101 018 | 4 0 3 3 | 4 4 4 0 |
| Total supply volume (tons)          | 33 331  | 261 260 | 4 0 3 3 | 4 4 4 0 |



 Table 5. Transportation costs in case study 4.

| Case | Description                    | Transportation | Imp<br>(%) |
|------|--------------------------------|----------------|------------|
| 4-0  | Manual                         | 101 142        | 0          |
| 4-1  | Eight areas, fixed destination | 90515          | 10.5       |
| 4-2  | One area, fixed destination    | 84 568         | 16.4       |
| 4-3  | One area, free destination     | 82185          | 18.7       |







 Table 3. Transportation costs in case study 2.

| Case | Description                             | Transportation cost | Imp (%) |
|------|-----------------------------------------|---------------------|---------|
| 2-0  | Base case                               | 5 607 674           | 0       |
| 2-1  | All industries opened 24 h/day          | 5 579 636           | 0.5     |
| 2-2  | Loaders only load trucks without cranes | 5 600 428           | 0.1     |
| 2-3  | Decrease loading time with 20%          | 5 383 367           | 4.0     |
| 2-4  | No fixed location for change of drivers | 5 102 983           | 9.0     |



#### Supply chain structure



#### Supply chain - Transports To the mills From the mills







#### Södra Cell, Supply Chain – production recipes



#### Daily variation due to batch (campaign) production: Assortment pine



# Challenges

- New planing process
- Large scale problem
- Campaign batching with harvesting, flows and inventories

# Modeling work

- Minimise total supply chain costs
- Daily time discretisation (during 3 months)
- Aggregation of international demand
- Production variables
  - Column generation of full 3-month production plans
- Flow and Storage Variables
  - eg flow of log type *a* from forest district *d* to pulp mill *j* in time period *t*
  - eg storage of pulp product type p at pulp mill j in time period t
- Constraints
  - Flow conservation, flow/storage capacities, demand

$$\begin{split} l_{ia,t-1}^{F} + H_{iat} &- \sum_{j \in M} x_{ijat} = l_{iat}^{F} \quad \forall i, a, t \\ l_{jp,t-1}^{H} + w_{jpt} - v_{jpt} = l_{jpt}^{H} \quad \forall j, p, t \\ \sum_{a \in A} f_{ja} &\leq T_{j}^{M} \quad \forall j \\ 0.9 f_{ja} &\geq \sum_{i \in F} x_{ijat} \leq 1.1 f_{ja} \quad \forall j, a, t \\ \sum_{j \in M} \sum_{a \in A} x_{ijat} &\leq T_{i}^{D} \quad \forall i, t \\ \sum_{j \in M} y_{jdpt} &= D_{dpt}^{D} \quad \forall d, p, t \\ \sum_{j \in M} v_{jpt} &= D_{pt}^{E} \quad \forall p, t \end{split}$$

Storage in forests

Storage at domestic harbours

Inflow levels

Inflow levels

Capacity levels in forests

Domestic demand

International demand

$$l_{ja,t-1}^{A} + \sum_{i \in F} x_{ijat} - \sum_{q \in Q_j} \sum_{r \in R_j} R_{jra}^{in} \delta_{jqrt} z_{jq} - l_{jat}^{A} = 0 \quad \forall j, a, t \quad \text{dual:} \quad \alpha_{jat}$$

$$l_{jp,t-1}^{P} + \sum_{q \in Q_{j}} \sum_{r \in R_{j}} R_{jrp}^{out} \delta_{jqrt} z_{jq} - w_{jpt} - \sum_{d \in D} y_{jdpt} - l_{jpt}^{P} = 0 \quad \forall j, p, t \quad \text{dual: } \beta_{jpt}$$

$$\sum_{q \in Q_j} z_{jq} = 1 \quad \forall j \qquad \text{dual: } \gamma_j$$

# $R_{jra}^{in}$ = amount of assortment *a* used in one time period when running recipe *r* at pulp mill *j*

- $R_{jrp}^{out}$  = amount of product *p* produced in one time period when running recipe *r* at pulp mill *j*
- $\delta_{jqrt} = 1$  if recipe *r* runs in production plan *q* during time period *t* at pulp mill *j*, 0 otherwise

#### Solution method - column generation



![](_page_47_Figure_0.jpeg)

- Normal variable branching is not effective
  - There are very few 0/1-variables with value 1 (out of a very large number of possible)
  - The 1-branch is too strong (most often creating infeasible solutions)
  - The 0-branch is too weak (there are many similar production plans)
  - Procedure creates a huge Branch and Bound tree

- Constraint branching enables a more efficient strategy
- Given a fractional LP-solution:
  - Sum the fractional usage of each receipe for each time period and pulp mill
  - choose the usage closest to 1.0 and branch on this
    - for example: use receipe S90Z at day 14 in mill Mönsterås
  - the branch is easy to implement in the subproblem i.e. simply remove certain arcs

- Initial tests with 90 time periods gave a master problem with about 28,000 constraints and a unpractical solution time of several days .....
- New model with flexible aggregation of time periods
  - Main problem:
    - Example: Month 1: 1 day, Month 2: 2 days, Month 3: 3 days
  - Subproblem:
    - Column generation subproblem use most detailed level of time periods e.g. one day

- -3 Swedish pulp mills
- Comparison with manual plan
- 10 forest districts producing 4 log types
- -15 products (specific recipes per pulp mill)
- 90 days planning giving 90 time periods (or aggregated 55 time periods)
- -Model:
  - Master: 9,500 constraints; 31,800 variables+1,500 generated
  - Sub: Production Plan Generator:
    - 300,000 arcs (full subproblem)
    - 5,500 arcs (lower bounds on campaign length)

#### Production plans

![](_page_49_Figure_11.jpeg)

![](_page_50_Figure_0.jpeg)

# Production plans

Comparison with manual plans
Change over (manual 2.7 MSEK, opt 4,7 MSEK)

| VARO      | VA S90Z  |   |  |    |    |  |
|-----------|----------|---|--|----|----|--|
| VARO      | VAS85RZ  |   |  |    |    |  |
| VARO      | VAS85TZ  |   |  |    |    |  |
| VARO      | VAS80TZ  |   |  |    |    |  |
|           |          |   |  |    |    |  |
| MONSTERAS | MONSBZ   |   |  |    |    |  |
| MONSTERAS | MONS90Z  |   |  |    |    |  |
| MONSTERAS | MONS85Z  |   |  |    |    |  |
| MONSTERAS | MONS85S  |   |  |    |    |  |
| MONSTERAS | MONS90S  |   |  |    |    |  |
| MONSTERAS | MSTOP    |   |  |    |    |  |
|           |          |   |  |    |    |  |
| MORRUM    | MORSBZ   |   |  |    |    |  |
| MORRUM    | MORS90TD |   |  |    |    |  |
| MORRUM    | MORS70TZ |   |  |    |    |  |
| MORRUM    | MORS90RD |   |  |    |    |  |
|           |          | 1 |  | 31 | 61 |  |

Total (manual 119.5 MSEK, opt 108.8 MSEK)

# Tactical planning – Annual resource planning

![](_page_51_Picture_1.jpeg)

## Case study at SCA

- 46 machines in 23 teams
- Harvesters: 22 small, 6 medium and 18 large
- Forwarders: 33 small, 10 medium and 8 large
- Each machine:
  - average capacity of 2400 hours
  - average cost 70-130 euros per hour
- 14 home bases
- 968 harvest areas with 8,971 hectares and 1,33 million cubic meters
- 4 seasons: winter 18 weeks, spring 9 weeks, summer 16 weeks and autumn – 8 weeks

## Harvest machines

- Harvest team connection
- Machine type (harvester/ forwarder/ harwarder)
- Size (small, medium, large, very large)
- Efficiency (evaluated by the planner)
- Operating cost (SEK per hour)
- Available G<sub>0</sub> hours for thinning and final felling operations, respectively (combined for both)

#### Harvest areas

- GIS coordinates
- Ownership (own or external)
- Thinning or final felling operations
- Ground condition
- Area (square meter)
- Average size of a tree (cubic meter)
- Fowarding distance
- Volume
- Possible harvest periods (winter, spring, summer, autumn)

## Performance functions harvesters

![](_page_53_Figure_1.jpeg)

## Performance functions - forwarders

![](_page_53_Figure_3.jpeg)

# Performance functions - harwarder

![](_page_54_Figure_1.jpeg)

## Cost components

- Production cost
  - Harvesting cost
  - Forwarding cost
- Travel cost
  - Daily travel between home base and harvest area (based on km)
- Moving cost
  - Moving of equipment between harvest areas
  - Depending on distance:
    - Short: machine moves itself
    - Longer. machine put on a trailer

![](_page_55_Picture_0.jpeg)

# Optimization model - decisions

- Allocate machines to harvest areas
  - each harvest areas has two tasks: harvesting and forwarding
  - Note that each forwarder and harvester do only one task while a harwarders does two.
- Schedule and route the machines given their allocated harvest areas over the year
- Model: integrated location and routing problem

$$z_{production} = \sum_{m \in M} \sum_{i \in I_m} \sum_{t \in T} (c_{mi}^h + c_{mi}^f) y_{mit}$$

$$z_{traveling} - \sum_{m \in M} \sum_{i \in I_m} \sum_{t \in T} h_{mi} y_{mit}$$

$$z_{moving} = \sum_{m \in M} \sum_{i \in I_m} \sum_{j \in A} g_{mij} x_{mij}$$

$$z_{pool} = \sum_{i \in I} \gamma v_i s_i$$

min 
$$z = z_{production} + z_{traveling} + z_{moving} + z_{pool}$$

s.t.

$$\sum_{m \in M_h} \sum_{t \in T} y_{mit} + \sum_{m \in M_d} \sum_{t \in T} y_{mit} + s_i = 1, \qquad i \in I$$
(1)

 $s_i$ 

 $y_{mit}$ 

$$\sum_{m \in M_f}^{\infty} \sum_{t \in T}^{\infty} y_{mit} + \sum_{m \in M_d}^{\infty} \sum_{t \in T}^{\infty} y_{mit} + s_i = 1, \qquad i \in I$$
(2)

$$\sum_{i \in I_m} (t_{mi}^h + t_{mi}^f) y_{mit} \leq t_{mt}, \qquad m \in M, t \in T$$
(3)

$$\sum_{t \in T} (\sum_{i \in I_f} (t_{mi}^h + t_{mi}^f) y_{mit} - a_m^w \sum_{i \in I} (t_{mi}^h + t_{mi}^f) y_{mit}) \ge 0, \qquad m \in M, w = t, f \qquad (4)$$

$$\sum_{i \in I} \sum_{j \in I} \sum_{i \in I} v_m s_m \le b^w, \qquad w = t, f \qquad (5)$$

$$\sum_{m \in M} \sum_{i \in I_m} \sum_{j \in I_m} \sum_{i \in I_m} x_{mij} = \sum_{t \in T} y_{mjt}, \quad j \in I$$

$$\sum_{m \in M} \sum_{i \in I_m} \sum_{j \in I_m} x_{mij} = \sum_{t \in T} y_{mit}, \quad i \in I$$
(6)
(7)

$$\sum_{M} \sum_{i \in I_m} \sum_{j \in I_m} x_{mij} = \sum_{t \in T} y_{mit}, \quad i \in I$$
(7)

$$\sum_{i \in S} \sum_{j \in S} x_{mij} \leq |S| - 1, \quad 2 \leq |S| \leq |I|, m \in M$$
(8)

$$y_{mit} \in \{0,1\}, \quad \forall m \in M, i \in I_m, t \in T \quad (9)$$
  
$$x_{mij} \in \{0,1\}, \quad \forall m \in M, i, j \in I_m \quad (10)$$

$$\in \{0,1\}, \quad \forall n \in \mathbb{N}, i, j \in \mathbb{I}$$

$$\in \{0,1\}, \quad \forall i \in I$$

$$(10)$$

$$= 0, \qquad \forall m \in M, i \notin I_m, t \in T \quad (12)$$

# Optimization method

- We solve the problem in two phases:
- Phase 1: (Generalized assignment problem)
  - Decisions: Allocation of machines to harvest areas
  - Objective: production + traveling costs + pool cost + artifical to approximate moving cost  $\sum$
  - Constraints: all except scheduling
- $\sum_{i \in I_m} \alpha_1 * \alpha_2^{d[i,a]} y_{mit}$
- Phase 2: (Traveling salesman problem)
  - Decisions: schedule the harvest areas allocated to each machine (take into accound seasons & overlap)
  - Objective: moving cost
  - Constraints: scheduling constraints, seasons & overlap

![](_page_57_Picture_11.jpeg)

![](_page_58_Figure_0.jpeg)

![](_page_58_Figure_1.jpeg)

![](_page_59_Figure_0.jpeg)

#### Implementaion and result generation

- Implementation using AMPL (with CPLEX) & Excel
- Input data:
  - one excel sheet
- Optimization
  - AMPL (model and developed method)
- Output result:
  - One Excel sheet with specified results
  - Aggregated result down to detailed
  - Maps with allocation and season scheduling

![](_page_60_Figure_0.jpeg)

![](_page_60_Figure_1.jpeg)

# Supply chain design

![](_page_61_Picture_1.jpeg)

![](_page_61_Picture_2.jpeg)

# Train / terminal structure

![](_page_61_Picture_4.jpeg)

![](_page_61_Picture_5.jpeg)

- Major Swedish forest company (Sveaskog) with 16% of overall productive forest area
- Using one train system, Trätåget
- Study to use a new system, Bergslagspendeln, with a number of potential terminals

![](_page_62_Figure_3.jpeg)

# Case study

- 1,500 supply points, 220 industrial demands,
- 5 train routes, 10 potential terminals,
- 12 products, 8 product groups, five scenarios.
- 3,000 constraints, 30 million variables
- Solution time 1 minute several hours
- Truck transports reduced by 35% and overall energy 20%

![](_page_63_Picture_0.jpeg)

# Concluding remarks

![](_page_64_Picture_1.jpeg)

#### Summary and future OR opportunities/ challenges

- Typical savings from optimization: 5-10%
- Specialized models and methods required
  - Important with "real world" models and data
  - Quick and flexible/robust solution methods
- Forest industry is an area with open optimization problems
- Opportunities:
  - Robust models to meet uncertainties
  - New applications e.g. forest fuel supply chain
  - Consider faulty data in the planing process
  - Integrate several steps of the supply chain
  - Environmental considerations (CO2, bio-diversity, recreational, ..)
  - Operations Research vital for ongoing industrial success

### Articles

- D. Bredström, P. Jönsson and M. Rönnqvist, Annual planning of harvesting resources in the forest industry, *International Transactions in Operations Research*, Vol. 17, No. 2, 155-177, 2010.
- P. Flisberg, B. Liden and M. Rönnqvist, A hybrid method based on linear programming and tabu search for routing of logging trucks, *Computers & Operations Research*, Vol. 36, 1122-1144, 2009.
- S. D'Amours, M. Rönnqvist and A. Weintraub, Using Operational Research for supply chain planning in the forest product industry, *INFOR*, Vol. 46, No. 4, 47-64, 2008.
- G. Andersson, P. Flisberg, B. Liden and M. Rönnqvist, RuttOpt A decision support system for routing of logging trucks, *Canadian Journal of Forest Research*, Vol. 38, 1784-1796, 2008.
- D. Carlsson and M. Rönnqvist, Backhauling in forest transportation models, methods and practical usage, *Canadian Journal of Forest Research*, Vol. 37, 2612-2623, 2007.
- H. Gunnarsson, M. Rönnqvist and D. Carlsson, A combined terminal location and ship routing problem, *Journal of the Operational Research Society*, Vol. 57, 928-938, 2006.
- M. Forsberg, M. Frisk, and M. Rönnqvist, FlowOpt a decision support tool for strategic and tactical transportation planning in forestry, *International Journal of Forest Engineering*, Vol. 16, No. 2, pp. 101-114, July 2005.
- D. Bredström, J. T. Lundgren, M. Rönnqvist, D. Carlsson and A. Mason, Supply chain optimization in the pulp mill industry IP models, column generation and novel constraint branches, *European Journal of Operational Research*, Vol 156, pp 2-22, 2004.
- Articles on cutting are not included due to confidentiality requirements from companies