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Introductions

About Me

At Georgia Tech for 9 years

Research interests in dynamic and stochastic logistics
optimization; routing and scheduling; logistics system
resiliency

www.isye.gatech.edu/valerera

If you don't understand

Please interrupt me and ask questions...
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S+R Optimization in Logistics

What to remember

1 Stochastic and robust optimization are for dynamic decision
problems

2 Many ways to e�ectively incorporate parameter uncertainty in
logistics optimization

3 Modeling and treatment of recourse especially critical

4 Ensure that your model is useful (and interesting), then solve
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S+R Optimization in Logistics

Scope

What I will cover:

Stochastic integer programming

Chance constraints and integer programming

Robust (worst-case) constraints and integer programming

Primarily modeling, and solution heuristics

What I will not cover:

Dynamic programming (MDP)

Approximate dynamic programming
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S+R Optimization in Logistics

Modeling

Dynamic planning

Dynamic planning problems

A dynamic planning problem is one where planning decisions are
made sequentially in time

Motivating Examples

Each month, a load plan (freight routing plan) is determined
for the following month

Each week, an empty trailer repositioning plan is determined
for the following week

Each evening, distribution vehicle routes are planned for
tomorrow

Each time a new customer request arrives, it is added to a
vehicle route
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S+R Optimization in Logistics

Modeling

Are most logistics planning problems dynamic?

Yes!

Many, if not most, quantitative decision problems in logistics
are inherently dynamic, by my de�nition.

Our focus: how to build and solve an appropriate

optimization model for each such problem?
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Modeling

Planning and control

Control decisions

Between planning periods, controls are used to implement a plan
feasibly and e�ectively

Plan, P Controls, R

Fixed cost
c

F
(P)

Operating cost
<c

O
(P, R)>

Simple rules, or may result from (recourse) optimization problems
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S+R Optimization in Logistics

Modeling

Deterministic and Stochastic Planning Models

Two classes of optimization models for dynamic logistics planning:

Deterministic Model

A model in which all parameters are assumed to be known when
planning

Stochastic Model

A model in which one or more parameters are assumed to be
uncertain when planning
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S+R Optimization in Logistics

Modeling

When Should Uncertainty Be Ignored?

Parameter Availability

Are all model parameters known when planning?

Parameter Variability

If uncertain model parameters are replaced with nominal
(expected) values when planning, does the model produce good
results?

The latter is another engineering decision
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Modeling

How Should Uncertainty Be Incorporated?

1 Probabilistic programming models

2 Two-stage models
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Modeling

How Should Uncertainty Be Incorporated?

Two-Stage Models

Imagine an environment with two decision stages:

1 First (Planning) Stage: Planning decisions are made, some
parameters uncertain

2 Second (Control, Recourse) Stage: Control decisions are
made, all uncertain parameters revealed (known)

Many real-world problems can be modeled with precision in
this way

Even for those that cannot, this is still frequently a
reasonable �rst approximation for including uncertainty during
planning
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Modeling

Two-stage Recourse Models

Explicit modeling of control decisions:

1 First (Planning) Stage: Planning decisions are made, some
parameters uncertain

2 Second (Control, Recourse) Stage: Control decisions are
made, all uncertain parameters revealed (known)

A Key Modeling Issue

How are second stage (recourse) decisions to be modeled?

1 Fixed operating rules, or

2 Optimization problem for control
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Modeling

How Should Uncertainty Be Incorporated?

Multi-Stage Models

In many dynamic planning settings, uncertainty is revealed in
multiple stages over time

1 First Stage: Given (0; I0), decisions x1 are determined

2 nth Stage: Given (xn�1; In�1), decisions xn are determined

Information pattern Ik summarizes known and uncertain
information available for stage k + 1 decision-making
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S+R Optimization in Logistics

Modeling

How Should Uncertainty Be Incorporated?

Probabilistic Programming

Planning decisions are made using models that use
probabilistic forms in the constraints or objective function

Control or recourse decisions are not modeled explicitly

Not typically used directly today, but

Ideas like chance constraints or robust constraints can be
useful, and can be incorporated if necessary within explicit
two-stage models
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Modeling

Remainder of Presentation

Illustration of the ideas via examples

References for more detailed information
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Vehicle Routing under Uncertainty

Probabilistic Programming

VRP with Stochastic Demands (VRPSD)

Capacitated Vehicle Routing Problem

Given depot-based 
eet of vehicles of capacity Q, travel cost
matrix fcijg, and known customer demands fqig, �nd set of
depot-based capacity feasible vehicle tours with minimum total
travel cost

17/ 78
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Vehicle Routing under Uncertainty

Probabilistic Programming

VRP with Stochastic Demands (VRPSD)

Parameter Availability

Customer demand values not known with certainty when
planning

Di�erent models use di�erent assumptions about when they
are known

1 Before vehicle departure from depot each day
2 Upon arrival at customer location
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S+R Optimization in Logistics

Vehicle Routing under Uncertainty

Probabilistic Programming

VRP with Stochastic Demands (VRPSD)

Vehicle Routing Problem with Stochastic Demands

Given depot-based 
eet of vehicles of capacity Q, travel cost
matrix fcijg, and uncertain customer demands feqig independent
with known distributions, �nd set of depot-based vehicle tours that
(*)

Probabilistic programming version

(*) Minimize total travel cost subject to chance constraints

on the capacity feasibility of each vehicle tour

Tours must be planned before uncertainty revealed

19/ 78
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Vehicle Routing under Uncertainty

Probabilistic Programming

Chance-constrained VRPSD Model

Stewart and Golden (1982)

(m-vehicle VRP)

min
X
k

X
i ;j

cijxijk

X
i ;j

qixijk � Q 8 k

fxijkg 2 Sm

where Sm is set of all m-traveling salesperson solutions
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Vehicle Routing under Uncertainty

Probabilistic Programming

Representing chance constraints

Deterministic equivalents

Can we �nd a equivalent deterministic representation of the set of
all solutions satisfying chance constraints:

K = \iK
i

where
K i = fx jP(Ai (!)x � hi (!)) � �ig

Straightforward and linear when Ai �xed, but

More di�cult when Ai (!) varies (even if hi (!) �xed)
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Vehicle Routing under Uncertainty

Probabilistic Programming

Deterministic equivalent for capacity chance constraint

P

0@X
i ;j

eqixijk � Q

1A � 1� � 8 k

Deterministic equivalent

Mk + �Sk � Q 8 k

where Mk =
P

i ;j �ixijk and Sk =
qP

i ;j �
2
i xijk , and

P

�P
i ;j eqixijk �Mk

Sk
� �

�
= 1� �

22/ 78



S+R Optimization in Logistics

Vehicle Routing under Uncertainty

Probabilistic Programming

Deterministic equivalent for capacity chance constraint

Deterministic equivalent

Mk + �Sk � Q 8 k

where Mk =
P

i ;j �ixijk and Sk =
qP

i ;j �
2
i xijk , and

P

�P
i ;j eqixijk �Mk

Sk
� �

�
= 1� �

Approach works when eqi are independent, then there may exist a �
that satis�es the expression (true for normal, Poisson, binomial
random variables)
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Vehicle Routing under Uncertainty

Probabilistic Programming

Normal distribution example

Suppose feq1; eq2; :::; eqng are independent and normally
distributed

Means �i , variances �2

i

Then eq(S) =Pi2S eqi remains normal

Mean �(S) =
P

i2S
�i , variance �2(S) =

P
i2S

�2

i

And
eq(S)��(S)

�(S) is N(0; 1)

Therefore � = ��1(1� �)
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Vehicle Routing under Uncertainty

Probabilistic Programming

Using deterministic equivalent

Heuristics

Computing Mk and S2
k for all routes not di�cult

Simple updating procedures when customers enter or leave
routes in neighborhood search

Remember, variance of a sum of independent random
variables is the sum of the variances of the individual random
variables
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Vehicle Routing under Uncertainty

Probabilistic Programming

Using deterministic equivalent

Exact approaches

Laporte, Louveaux, and Mercure (1989): \subtour" elimination for
2-index formulation

Consider customer set U

Let V�(U) be smallest integer s.t.
P
�P

i2U eqi > QV�(U)
�
� �

\Subtour" elimination cut:X
i2U;j2U

xij +
X

i2U;j2U

xij � 2V�(U)

We can determine V�(U) as follows:
V�(U)� 1Q < MU + �SU � V�(U)Q
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Vehicle Routing under Uncertainty

Two-stage Models

Two-stage models: �xed routes

What are �xed routes?

Delivery routes used essentially unchanged daily for some
period of time

Why use �xed routes?

Reduce costs

Simplify picking/staging costs at distribution center
Eliminate daily use of optimization software

Improve driver performance

Develop familiarity with a delivery area and set of customers

Improve customer service

Driver develops relationship with customer
Driver performs additional services for customer
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VRP with Stochastic Demands (VRPSD)

Vehicle Routing Problem with Stochastic Demands (collection
version)

Given depot-based 
eet of vehicles of capacity Q, travel cost
matrix fcijg, and uncertain customer demands feqig independent
with known distributions, �nd set of depot-based vehicle tours that
(*)

Two-stage integer programming version

(*) Minimize expected total travel cost given a recourse

policy (control decision strategy)

A priori tours must be planned before uncertainty revealed

Parameter availability: customer demands known upon vehicle
arrival
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Two-stage model for VRPSD

1st stage: A priori tours

Minimize expected cost

2nd stage: Operational tours

Use recourse (control) policy

Dror et al. (1989) Recourse Policy

Follow a priori tour

When vehicle capacity met or exceeded, detour to depot to unload
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Models

Two-stage stochastic integer program

min
x2X

z = cT x + E [min
y
fq(!)T y jWy = h(!)� T (!)x ; y 2 Y g]

s:t: Ax = b

where X and/or Y impose integrality restrictions.

Deterministic equivalent form

min
x2X

z = cT x +Q(x)

s:t: Ax = b
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Computing Q(x)

Consider single tour with homogeneous discrete customer demand
distributions, and recourse only initiated if observed customer
demand would exceed remaining vehicle capacity

Tour T = f1; 2; � � � ; ng

pi (�) probability that customer i demand value is �

�(i ; s; q) probability of remaining capacity q after serving
customer i , s = 1 if recourse action occurred at i , 0 otherwise

�(i ; 0; q) =
X
s

X
�q2[q;Q]

�(i � 1; s; �q) pi (�q � q)

�(i ; 1; q) =
X
s

X
�q2[0;Q�q�1]

�(i � 1; s; �q) pi (Q � q)
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Computing Q(x)

Consider single tour with homogeneous discrete customer demand
distributions, and recourse only initiated if observed customer
demand would exceed remaining vehicle capacity

�i probability of a tour failure and recourse at customer i

�i =
X
q

�(i ; 1; q)

Expected recourse cost X
i2T

2�i (ci ;0)
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Example Q(x) computation

Setting

Suppose tour has three customers, and Q = 2

Each customer demand distribution:

p(�) =

(
0:2 � = 0

0:8 � = 1
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Example Q(x) computation

Computations

Customer 1
�(1; s = 0; q = 0) = p(Q � q = 2) = 0

�(1; s = 0; q = 1) = p(1) = 0:8
�(1; s = 0; q = 2) = p(0) = 0:2
�(1; s = 1; q) = 0

Customer 2

�(2; s = 0; q = 0) = �(1; 0; 1)p(1) = 0:64
�(2; s = 0; q = 1) = �(1; 0; 1)p(0) + �(1; 0; 2)p(1) =
(0:8)(0:2) + (0:2)(0:8) = 0:32
�(2; s = 0; q = 2) = �(1; 0; 2)p(0) = 0:04
�(2; s = 1; q) = 0
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Example Q(x) computation

Computations

Customer 3

�(3; s = 0; q = 0) = �(2; 0; 0)p(0) + �(2; 0; 1)p(1) =
(0:64)(0:2) + (0:32)(0:8) = 0:384
�(3; s = 0; q = 1) = �(2; 0; 1)p(0) + �(2; 0; 2)p(1) =
(0:32)(0:2) + (0:04)(0:8) = 0:096
�(3; s = 0; q = 2) = �(2; 0; 2)p(0) = (0:04)(0:2) = 0:008
�(3; s = 1; q = 1) = �(2; 0; 0)p(1) = (0:64)(0:8) = 0:512
Failure Probabilities �1 = �2 = 0; �3 = 0:512
Recourse Cost = 2(0:512)c03 = 1:024c03
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Two-stage Models

Integer L-shaped method

Extension of Van Slyke and Wets (1969) for SP

Bender's decomposition approach

Use cuts on �rst-stage decisions to:

Ensure second-stage feasibility with feasibility cuts
Create a linear approximation of Q(x) with optimality cuts

First-stage feasibility is trivial for VRPSD, so focus only on
optimality cuts.
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Integer L-shaped method for VRPSD

Gendreau, Laporte, and Seguin (1995); Laporte, Louveaux, Van
Hamme (2002)

Add constraint that expected demand of each a priori tour
cannot exceed vehicle capacity

Formulation

min
i<j

cijxij +Q(x)

subject to constraints of two-index undirected CVRP problem,
where customer demand eqi = E [eqi ] for \subtour elimination"
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Integer L-shaped method for VRPSD

Gendreau, Laporte, and Seguin (1995); Laporte, Louveaux, Van
Hamme (2002)

Add constraint that expected demand of each a priori tour
cannot exceed vehicle capacity

Relaxed Formulation

min
i<j

cijxij + �

subject to constraints of two-index undirected CVRP problem,
where customer demand eqi = E [eqi ] for \subtour elimination"
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Integer L-shaped method for VRPSD

Basic branch-and-cut approach

Let �v be a lower bound on Q(x), and fathom if cxv + �v � z

When integer xv found, compute Q(xv ) and update best
found solution

If �v � Q(xv ), fathom (branch is optimal)
Else, introduce cut to move away from this solution, and
continue

Lower bounding of Q(x); Laporte et al. (2002)

Add cuts that are valid lower bounds on Q(xv ) (regardless of xv

integer)

Detailed, but based on the idea of approximating expected
recourse cost of failure by considering �rst tour failure only
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Integer L-shaped method for VRPSD

Computational results from Laporte, et al. (2002)

Heterogeneous Poisson demands

Number of customers n 2 f25; 50; 75; 100g

Number of vehicles m 2 f2; 3; 4g, 2 only for n � 75

\Fill rate" 0:9 = Total expected demand divided by total
capacity of all vehicles

As �ll rate approaches 1, evidence suggests computational
di�cult increases much faster than linearly
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Sample average approximation (SAA)

Kleywegt, Shapiro, and Homem-de-Mello (2002)

An alternative approach for solving two-stage SIP

SAA

Generate a sample of all realizations of uncertain parameters

Solve deterministic problem, explicitly satisfying all constraints
for each realization in the sample

Use many such samples to:

Identify best plan
Approximate the optimality gap

See Verweij, Ahmed, Kleywegt, Nemhauser, Shapiro (2003)
for stochastic routing applications
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Limitations of VRPSD models

Metaheuristics for practical instance sizes

Gendreau et al. (1996) extend TABUROUTE to problems
with stochastic demands: TABUSTOCH

Reasonable performance, although solutions degrade as n
increases to 50
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Two-stage Models

Limitations of VRPSD models

Detour-to-depot recourse policy is limited

Each vehicle operates its a priori tour independently

Enables analysis, but does not provide any opportunity for risk
pooling

Multi-vehicle coordinated recourse policies

Erera (2000): analysis of many policies using techniques of
continuous approximation

Ak and Erera (2007): detailed analysis and tabu search
heuristic for two-vehicle sharing policy
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Two-vehicle sharing recourse policy

Planned a priori tour pair

Type II Type I

Failure

Type II Type I

Actual paired locally-coordinated tours 

Failure

Paired locally-coordinated (PLC) recourse; Ak and Erera (2007)

Type I capacity failure: unserved customers appended to type II tour

Type II capacity failure: use detour-to-depot
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Tabu search for PLC recourse strategy

PLC Tabu Search

Adapted from Gendreau et al. (1996)

Exact recursive expected recourse cost Q(x) computation for a
given solution for homogeneous discrete demand distributions

Condition on the customer � in the Type I tour where failure
occurs, with probability q

�

Insert customers � + 1; ::: into Type II tour after �nal
customer, and use detour-to-depot

Randomized neighborhood N(p; r ; q)

Each of q randomly selected customers is reinserted before or
after one of p randomly selected close neighbors from the list
of r nearest
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Results for PLC recourse strategy

Number of Center Depot

Customers DD 1 DD 2 DD 3 DD 4

10 0.38% 0.31% 0.91% 0.83%
25 2.04% 1.75% 1.54% 2.88%
50 5.67% 3.88% 2.64% 5.03%
100 8.42% 6.42% 4.87% 9.61%
150 11.17% 8.47% 7.02% 10.73%

Table: Average percent improvement in expected travel cost generated by
the PLC recourse strategy for test problems; average over ten instances
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Results for PLC recourse strategy

Number of Corner Depot

Customers DD 1 DD 2 DD 3 DD 4

10 4.01% 4.16% 0.38% 3.04%
25 5.85% 5.57% 4.95% 6.19%
50 8.66% 8.83% 7.53% 9.23%
100 15.46% 10.60% 10.05% 12.65%
150 15.88% 11.21% 10.81% 12.70%

Table: Average percent improvement in expected travel cost generated by
the PLC recourse strategy for test problems; average over ten instances
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Two-stage Models

Limitations of VRPSD models

Physical capacity Q does not create a need for additional vehicles

Single vehicle feasibility

There exists a feasible solution to VRPSDC problems in which a
single tour is planned from the depot.

Remember, if capacity fails then we can always
detour-to-depot to unload
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Limitations of VRPSD models

Using multiple vehicles to reduce expected cost

Any \vehicle" beyond the �rst used can be interpreted as a
pre-emptive detour to the depot for vehicle one!

1

1

1

1

eqi = 1 or 2 each with
probability 1

2 , and Q = 3

Expected cost (left) = 4:5,
expected cost (right) = 4
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Two-stage Models

Limitations of VRPSD models

Time constraints are the real reason why multiple vehicles are
needed for stochastic routing problems

Ad-hoc modeling

Insist on target 
eet size m that implicitly limits tour durations

Explicit modeling

VRPSD with Duration Constraints (VRPSD-DC)

VRPSDC with Time Window Constraints
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Using Robust Constraints

Detour-to-depot adds to tour duration

Assumptions

All travel times known with certainty

Uncertain number and location of recourse actions creates
uncertainty in tour duration
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Using Robust Constraints

Using Robust Constraints for VRPSD-DC

Morales (2006); Erera, Morales, and Savelsbergh (2010, to appear)

Robust duration constraints

Use a two-stage model to minimize expected tour costs under
a recourse policy

No recourse for a tour requiring too much time!
1 Chance constraint, or
2 Objective function penalty, or
3 Robust constraint
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Using Robust Constraints

Modeling using robust constraints

Uncertainty space U : a subset (not necessarily strict) of the
support of the random parameters

We will say that a second-stage constraint is a robust
constraint if it must hold for every parameter realization in U

Note: if U contains all outcomes, this idea is covered by
two-stage recourse model formulations
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Formulation

VRPSD with Robust Duration Constraints

Set of n customers, stochastic integer demand eqi
Recourse policy P, separable by tour

Change in �xed tour duration due to recourse, �(T ;P; q)

min
T1;:::;Tm

mX
k=1

t(Tk) + Eeq[�(Tk ;P; eq)]
st

Each customer on single tour

t(Tk) + �(Tk ;P; q) � D 8 q 2 U
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Formulation

VRPSD with Robust Duration Constraints

Set of n customers, stochastic integer demand eqi
Recourse policy P, separable by tour

Change in �xed tour duration due to recourse, �(T ;P; q)

min
T1;:::;Tm

mX
k=1

t(Tk) + Eeq[�(Tk ;P; eq)]
st

Each customer on single tour

t(Tk) + max
q2U

�(Tk ;P; q) � D
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Using Robust Constraints

Adversarial problem

Adversarial problem

max
q2U

�(T ;P; q)

Separability of recourse policy allows tour-by-tour evaluation

Is adversarial problem challenging?

Is q� = q?

Not worst for most recourse policies P

Is q� 2 fq 2 Zn+ : qi 2 fq
i
; qig 8 ig?

Again, no.
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Solving adversarial problem for detour-to-depot recourse

Conceptual idea

Given a tour T , adversary can choose the demands qi of each
customer to maximize the additional duration of the tour due to
recourse actions

Polynomial longest-path problem

For a tour T with n customers, the maximum duration can be
computed in O(n4) by generating an acyclic network and solving a
longest-path problem
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Previous-recourse Network G1

2/1

s

r = 1 r = 2 r = 4r = 3

3/1

4/1

5/1

3/2

4/2

4/3

5/2

5/3

4/3

5/3

5/4

5/4

s

5/4

Cost of arcs into node (r ; i=j) is the additional travel time:
2t0i
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Previous-recourse network G1

Recourse conditions de�ne which arcs exist

Observation

Given a demand realization q such that a recourse action occurs at
customer i , then remaining vehicle capacity when departing i is
Q � q(i).

Observation

If a recourse action occurs at i , and the prior recourse occurred at
j , then there exists a minimum demand q(i=j) at i that can cause
recourse:

q(i=j) = max

8<:1;Q + 1�
i�1X
`=j

q(`)

9=;
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Recourse conditions for G1

Theorem

Assume there exists q 2 U such that the (r � 1)-th recourse occurs

at j and the r-th recourse occurs at i > j . The (r + 1)-th recourse

can occur at k > i if and only if

max
�
q(i=j); q(i)

	
+

k�1X
`=i+1

q(`) � Q and

kX
`=i

q(`) � Q + 1
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How do duration constraints a�ect the solution?

α = 0.95 will have duration limit D = 164.4. Observe that two out of the three tours in this

solution would therefore exceed this duration limit.

Table 3 summarizes the solution of the constrained version of this instance when α =

0.95, and Figure 7 depicts the solutions to both the unconstrained and constrained versions

graphically.

Table 3: Metrics for the best solution found for the constrained version (with a total expected

travel time of 352.32)

Tour {1,20,9,3,12,4} {10,11,19,7,8,18,6} {5,17,16,14,15,2,13}
Fixed Duration L 109.90 99.93 102.40

Expected Duration LE 118.73 115.03 118.56

Max Duration L 159.90 152.43 163.23
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Figure 7: Best unconstrained solution and best constrained solution (α = 0.95).

Observe that by reversing the direction of tour {4,12,3,9,20,1}, the maximum duration

(now the result of a recourse action at customer 4) drops to 159.90 at the expense of a slight

increase in total expected duration. Reversing the order of tour {2,15,14,16,17,5,6,13} and

dropping customer 6 leads to a reduction in both the maximum and expected durations.

Finally, moving customer 6 after customer 18 in tour {10,11,19,7,8,18} leads to an increase

in both the maximum and expected durations, but the increase in maximum duration is

small.

24
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How do duration constraints a�ect the solution?

Table: Unconstrained version (total expected time 345.84)

Tour f4, ... ,1g f10,...,18g f 2,...,13g

Fixed L 109.90 93.39 107.42

Expected LE 115.73 99.34 130.77

Max L 173.14 145.88 168.25

Table: Constrained version (total expected time 352.32)

Tour f1, ... ,4g f10, ... ,6g f5, ... ,13g

Fixed L 109.90 99.93 102.40

Expected LE 118.73 115.03 118.56

Max L 159.90 152.43 163.23
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Impact of robust duration constraints

(N;Q; �;m) � �LE m + z

(100, Q1, High, 6) 0.95 0.69% 6
0.85 1.60% 6
0.75 -0.31% 7

(100, Q1, Med, 6) 0.95 1.01% 6
0.85 2.86% 6
0.75 -0.41% 7

(100, Q1, Low, 6) 0.95 1.18% 6
0.85 1.18% 6
0.75 5.22% 7

(100, Q2, High, 3) 0.95 0.67% 3
0.85 1.28% 3
0.75 -1.66% 4

(100, Q2, Med, 3) 0.95 0.17% 3
0.85 0.61% 3
0.75 -1.15% 4

(100, Q2, Low, 3) 0.95 0.17% 3
0.85 0.89% 3
0.75 -0.74% 4
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Recourse policies for time-constrained routing problems

Parameter availability

Assume that all customers to be served, and their demands, are
known prior to vehicle loading

Question

Can we create a plan that preserves most of the bene�ts of
traditional a priori routes, but can be used for problems with hard
time constraints?
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VRP with Stochastic Demand and Customers and Time
Windows

De�nition (VRPSDC-TW)

Set of n possible customers

Stochastic integer demand feqig, non-zero demand probability
fpig

Time windows [e1i ; `
1
i ] and [e2i ; `

2
i ]

Recourse (control) strategy

Find:

Set of �xed routes such that

Each customer served by exactly one �xed route
Control strategy yields actual routes that are capacity and time
feasible
Total expected travel costs given P minimized
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Traditional recourse policy for VRPSDC

1st stage: A priori tours

Minimize expected cost

2nd stage: Operational tours

Use �xed recourse policy

Bertsimas (1992) Type 'B' Recourse Policy

Follow a priori tour, skipping customers with no demand

When vehicle capacity met or exceeded, detour to depot to unload
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Recourse Strategy for Time Hedging

Erera, Savelsbergh, Uyar (2009)
Introduce backup, or secondary, vehicles

Each customer assigned to at most 2 �xed \routes"

Primary and secondary
A \route" now is simply an unordered set of customers

Recourse decisions determined by problem of �nding set of
actual routes such that:

Each customer served by either its primary or its secondary
vehicle
All actual routes time and capacity feasible
Total travel cost of actual routes is minimized

Features

1 Preserves bene�ts of traditional �xed routes

2 Allows 
exibility to restore feasibility and reduce costs
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Primary+Secondary Recourse

Primary assignments
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Primary+Secondary Recourse

Actual operational routes
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United Distributors, Atlanta, USA

Distributor of beer, wine, and spirits

Serve northern Georgia: (150 by 150 km)

Customer set

approximately 2500 known customer locations
Wide variation in pi

Moderate variation in eqi

Single depot

Fleet of approximately 50 homogeneous vehicles

Conjecture

Problem size indicates that heuristic approach appropriate!
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Customer classi�cation

Company prefers di�erent �xed routes for each delivery day
Mon, Tue, Wed, Thu, Fri

Large fraction of customers have very low probability of
delivery

Probability Range M Tu W Th F

pi < 10% 522 621 820 870 925

pi � 10% 330 1453 1366 1647 1573

Customer partition

High probability customers assigned to primary and secondary
routes

Low probability customers only added dynamically to
operational routes during recourse
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Time Window Characteristics

Earliest 1 Latest 1 Earliest 2 Latest 2 Customers %

9:00 AM 11:00 AM 2:00 PM 6:00 PM 1240 28.47

8:00 AM 4:00 PM / / 902 20.71

6:00 AM 11:00 AM / / 359 8.24

11:00 AM 6:00 PM / / 234 5.37

10:00 AM 6:00 PM / / 177 4.06

2:00 PM 6:00 PM / / 114 2.62

6:00 AM 1:00 PM / / 96 2.20

8:00 AM 1:00 PM / / 80 1.84

8:00 AM 12:00 PM / / 75 1.72

TOTAL= 3277 75.23
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Vehicle Routing under Uncertainty

Using Chance Constraints

Using two-stage model with chance constraints

Find primary assignments:

Primary assignments

Set of n possible customers

Stochastic integer demand feqig, non-zero demand probability
fpig

Time windows [e1i ; `
1
i ] and [e2i ; `

2
i ]

Skipping policy P

Find:

Set of �xed routes such that

Each customer served by exactly one �xed route
Policy P creates feasible actual routes with high probability

Total expected travel costs given P minimized
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Vehicle Routing under Uncertainty

Using Chance Constraints

Primary routes heuristic

Main Ideas

Construct primary routes via sequential insertion

Periodic calls to local search improvement routine

Evaluate feasibility and expected travel cost via sampling,
assuming operational routes will be constructed by skipping

recourse strategy only

Primary routes planned as traditional �xed routes
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Vehicle Routing under Uncertainty

Using Chance Constraints

Insertion feasibility

Capacity Feasibility

Central limit theorem for tour demand normality

Use traditional chance constraint form: Mk + �Sk � Q, with i

added

� corresponds to � = 0:90

Time Window Feasibility

Using fpjg, generate Monte Carlo sample of N customer
realizations

Customer i in all realizations (conditional sample)

Time windows must be satis�ed in fraction � of realizations
(� = 0:80)
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Vehicle Routing under Uncertainty

Using Chance Constraints

Secondary routes heuristic

Generate a sample of realizations

Solve a simple control problem for each realization

First apply simple skipping strategy to each primary route
Select customer on infeasible route to eject at random and �nd
feasible reinsert location that minimizes change in route quality
Repeat until all routes feasible
Apply improvement local search to improve route quality
Record route serving each customer

Most frequent route serving each customer, excluding the
primary route, is secondary assignment
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Vehicle Routing under Uncertainty

Using Chance Constraints

Operational routes heuristic

Given a single actual realization of customers and their actual
demands

First apply simple skipping strategy to each primary route

Restore feasibility using secondary assignments
Select customer on infeasible route to eject at random and �nd
feasible reinsert location on secondary route that minimizes
change in route quality
Repeat until all routes feasible

Apply improvement local search to improve route quality

Insert all low-probability customers arriving which do not have
primary+secondary assignments

Apply improvement local search to improve route quality

Apply route elimination, respecting primary+secondary
assignments
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Vehicle Routing under Uncertainty

Using Chance Constraints

Thursdays: Comparison with History

Day Routes Customers Total Miles Travel Min % in Miles % in Min

1.H 43 856 5360 8428 / /
1.GT 40 856 4459 7080 16.80 15.99
2.H 42 863 5245 8240 / /
2.GT 40 863 4318 6872 17.67 16.61
3.H 43 876 5638 8805 / /
3.GT 40 876 4495 7174 20.27 18.52
4.H 42 904 5587 8752 / /
4.GT 42 904 4808 7588 13.94 13.30
5.H 42 839 5195 8120 / /
5.GT 41 839 4363 6946 16.01 14.47

Route assignments

60-65 % of customers served by primary route

7 % of customers are dynamic (not on planned routes)
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Vehicle Routing under Uncertainty

Using Chance Constraints

Impact of Sample Size N

Table: Fixed Route Results for Di�erent Sample Size Parameter Values

N Run Time (hours) Avg. Time Feasibility Final Number of Routes

500 1.70 0.839 43

1000 3.24 0.860 43

2000 10.03 0.878 43

3000 15.80 0.882 42
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Vehicle Routing under Uncertainty

Using Chance Constraints

Impact of Sample Size N

Table: Daily Route Results for Di�erent Sample Size Parameter Values

N 500 1000 2000 3000

Number of infeasible days 0 0 0 0

Avg. travel time 4,411 4,503 4,534 4,485

Avg. number of vehicles 39.83 40.25 40.50 39.25

Max. number of vehicles 42 42 42 41

Percentage of customers visited by primary vehicle 62% 64% 63% 64 %

Run times (secs.) 14.75 14.17 14.83 14.50
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Empty Repositioning

Two-stage Robust Approximations

Approximating multiple stage problems

When are multi-stage models appropriate?

When decisions made during each stage impact the initial state
during the next (and future) stages

Multi-stage models capture the true process of uncertain
information becoming known during stages

A reasonable approximation, however, is to assume that all
uncertainty is revealed after the �rst (planning) stage

A direct extension of rolling horizon models that assume all
uncertainty is revealed during the planning stage
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S+R Optimization in Logistics

Empty Repositioning

Two-stage Robust Approximations

Approximating multiple stage problems

Rolling horizon two-stage approximation

Specify a planning horizon of a number of time periods

Partition planning horizon into two stages

Stage 1 periods: little to no uncertainty in parameters, and not
modeled
Stage 2 periods: some parameters modeled with uncertainty

Solve two-stage model, assuming that all uncertainty is
revealed in the second stage

Implement some decisions, roll horizon forward, and repeat
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Empty Repositioning

Two-stage Robust Approximations

Two-stage robust repositioning problem

Erera, Morales, Savelsbergh (2009)
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Repositioning in transportation

Seattle

Oakland

LA/LB

Rio

Buenos Aires

NY/NJ

Norfolk

Savannah

Southampton

Rotterdam

Hamburg

Algeciras
Gioia Tauro

Port Klang

Singapore

Shanghai

Hong Kong

Busan
Kobe

Tokyo

 Carriers earn revenue 
moving loads

 Example: Tank container 
management
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Net deficit

Net surplus

 Loads not balanced

 6 month loaded flows



Repositioning in transportation

Seattle

458

Oakland

LA/LB

Rio

Buenos Aires

NY/NJ

Norfolk

Savannah

Southampton

Rotterdam

Hamburg

Algeciras
Gioia Tauro

Port Klang

Singapore

Shanghai

Hong Kong

Busan
Kobe

Tokyo

838

148

491
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 Repositioning plan

 Static regional policy in 
this example
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Repositioning in transportation 

• System dynamics…

– Short-term, long-term seasonality

– Add new customers, lose old customers

– Add new demand flows, lose old demand flows

• … and system uncertainties

– Where and when will customer base change?

– Where and when will demand flows change?

– Business cycles



Repositioning in transportation 

• Planning question

– How should I move equipment this period?



Dynamic repositioning practice

Weekly depot-to-depot via network flow

– Initial number of resources at each depot

– Point forecasts of the net supply of resources               

at each depot during each week

w=0

44 23 37

14 12

Forecast Outflow

Forecast Inflow

w=1 w=2 w=3 w=4

Initial 
inventory

-30Net forecast -23 -25



Network flow problem

Depot A

Depot B

Depot C

w=0 w=1 w=2 w=3 w=4 w=5

…

…

…

Inventory arcs

Repositioning arcs

Net estimated supply

+5 -10 -32 -27 -12 -18

+15 +10 -5 -13 +7 -3

+40 +35 +20 +14 +5 +17



Network flow problem

Nominal repositioning problem

node-arc incidence matrix

point forecast supply vector, nominal values



– Estimation difficulties

• Blending known and unknown information

• Signal may be evolving rapidly, or unpredictably

Distribution forecasts

Depot A

Depot B

Depot C

w=0 w=1 w=2 w=3 w=4 w=5

…

…

…

+5 -10 -32 -27 -12 -18

+15 +10 -5 -13 +7 -3

+40 +35 +20 +14 +5 +17



Alternative robust approach 

• Expected value minimization limitations

– Estimation of distribution forecasts

– Risk-neutrality

– Computability for large-scale problems

• Robust approach goals

– Simpler input requirements

– Computability with off-the-shelf optimization software

– Focus on service

• Ensure ability to serve future customer requirements 

• Parametric control of conservatism



Ben-Tal, et al. (2004)

Adjustable robust counterpart

Erera, et al. (2009)

Transformable robust problem

Robust optimization



Related work

• Atamturk and Zhang (2007)

– Two-stage network flow and design with 

uncertain demand

– Complexity of separation problem

– Tractable special cases

• Lot-sizing problems

• Bertsimas and Sim (2003)

– Robust network flow with uncertain costs



No distribution for      assumed

Robust repositioning framework

Symmetric interval forecasts

where

-30Point forecast -23 -25

w=0 w=1 w=2 w=3 w=4

-50

[-32,-28]Intervals [-26,-20] [-30,-20] [-58,-42]



Depot A

Depot B

w=0 w=1 w=2 w=3

+1 -4 -5

+10 +2 +1

Nominal repositioning problem

Robust repositioning framework



Depot A

Depot B

w=0 w=1 w=2 w=3

+1 -4 -5

+10 +2 +1

An optimal solution for the 

nominal problem

1 0 0

7 4 5

3 5

Robust repositioning framework



Depot A

Depot B

w=0 w=1 w=2 w=3

+1 -4 -5

+10 +2 +1

Problem with uncertainty intervals

1 0 0

7 4 5

3 5

[-5,-3] [-6,-4]

[+1,+3] [0,+1]

Robust repositioning framework



Depot A

Depot B

w=0 w=1 w=2 w=3

+1 -4 -5

+10 +2 +1

1 0

7 4 5

3 5

[-5,-3] [-6,-4]

Risk of a stock out

[+1,+3] [0,+1]

Problem with uncertainty intervals

0

Robust repositioning framework



Depot A

Depot B

w=0 w=1 w=2 w=3

+1 -4 -5

+10 +2 +1

1 2 2

5 2 3

5 5

[-5,-3] [-6,-4]

[+1,+3] [0,+1]

Alternative feasible solution for 

the nominal problem

Higher nominal cost, but no stockout risk 

Robust repositioning framework



Depot A

Depot B

w=0 w=1 w=2 w=3

+1

+10 +2 +1

1 2 2

5 2 3

5 5

[-5,-3] [-6,-4]

[+1,+3] [0,+1]

-4 -6

Given realization, nominal solution not feasible

Allow variable adjustments 

to recover feasibility

Robust repositioning framework

-5



Net supply realization:

Adjustable decisions:         

Robust repositioning framework



Allowable adjustments

• Inventory flow adjustments

– Assume no capacity limitations

– Homogeneous inventory carrying cost

• Local repositioning flow adjustments

– Allow sharing between neighbors

– Only allow flow increases



Robust repositioning framework

Transformable robust optimization problem



Robust repositioning framework

Transformable robust optimization problem



• Develop sufficient constraint sets that 

guarantee                           for all 

• Constraint sets vary given feasible 

adjustments:

Solving



Parametric conservatism 

A robust solution with respect to      may 

be too conservative

At most k time-space demands can 

simultaneously realize worst case value



Inventory-only problem

where        restricts adjustable variables s.t.

Nominal flows on repositioning arcs cannot be 

adjusted, therefore each depot must hedge 

against uncertainty with only its own inventory



Depot A

w=0 w=1 w=2 w=3

0
[-1,+1] [-2,+2]

0 0

Maximum vulnerability

1 3

Inventory-only problem



Bounded vulnerability

Depot A

w=0 w=1 w=2 w=3

0
[-1,+1] [-2,+2]

0 0

Inventory-only problem

Simple knapsack problem

),( kN

  )  ,largest (),( NvbkkN v



Depot A

w=0 w=1 w=2 w=3

0
[-1,+1] [-2,+2]

0 0

Inventory-only problem

1)1 ,( 

1)2 ,( 

2)1 ,( 

3)2 ,( 



A feasible solution of the nominal problem  is k-robust 

inventory feasible if and only if for all inventory arcs a

Solvable in polynomial time by adding pre-

computed lower-bounds on inventory arcs to the 

nominal problem

Theorem

Inventory-only problem

),( kNx aa 



Depot A

Depot B

w=0 w=1 w=2 w=3

0

+4 0 0

0 2 2

2 2 2

2

[-1,+1] [-2,+2]

[-1,+1] [-2,+2]

0 0

Maximum vulnerabilities

1 3

1 3

Inventory-only problem



k-robust inventory example

Depot A

Depot B

w=0 w=1 w=2 w=3

0

+4 0 0

0 2 2

2

[-1,+1] [-2,+2]

[-1,+1] [-2,+2]

0 0

The solution is 1-robust

2 2 2

1 3

1 3

Bounded vulnerabilities

1 2

1 2

)1 ,( aN



Bounded vulnerabilities

k-robust inventory example

Depot A

Depot B

w=0 w=1 w=2 w=3

0

+4 0 0

0 2

2

[-1,+1] [-2,+2]

[-1,+1] [-2,+2]

0 -2

The solution is not 2-robust

2

2 2 2

1 3

1 3

1 3

1 3

)2 ,( aN



Inventory pooling

Depot A

Depot B

w=0 w=1 w=2 w=3

0

+2 0 0

0 1 0

1 0 0

1

[-1,+1] [-2,+2]

[-1,+1] [-2,+2]

0

If we allow depot A and B to reactively 

reposition containers between them, the 

solution is 2-robust

-2

1



ROP for reactive repositioning



Depots supply/receive

Feasibility for reactive repositioning

Depot B

Depot C

w=0 w=1 w=2 w=3

1 1 1

7 1 3

1 2

1 3

Depot A 1 2 2

2 3

3

5

4

3

3

4



Competing arcs: no reactive flow path

Feasibility for reactive repositioning

Depot B

Depot C

w=0 w=1 w=2 w=3

1 1 1

7 1 3

Depot A 1 2 2

3

5

4

1 2

1 3

2 3 3

3

4



Not competing

Feasibility for reactive repositioning

Depot B

Depot C

w=0 w=1 w=2 w=3

1 1 1

7 1 3

Depot A 1 2 2

3

5

4

1 2

1 3

2 3 3

3

4



Inbound-closed nodes: no inbound reactive arcs

Feasibility for reactive repositioning

Depot B

Depot C

w=0 w=1 w=2 w=3

1 1 1

7 1 3

Depot A 1 2 2

3

5

4

1 2

1 3

2 3 3

3

4



Not inbound-closed nodes

Feasibility for reactive repositioning

Depot B

Depot C

w=0 w=1 w=2 w=3

1 1 1

7 1 3

Depot A 1 2 2

3

5

4

1 2

1 3

2 3 3

3

4



A solution x to the nominal problem is feasible for the reactive repositioning robust 

repositioning problem if and only if for every set of competing arcs K defining an 

inbound closed node set U:

Theorem

Feasibility for reactive repositioning

Depot B 1 1 1

Depot A 1 2 2

3

4

1 2

2 3 3

3

),( kUx
Ka

a 




Theorem

Feasibility for reactive repositioning

• Potentially large number of constraints

• Resulting formulation requires IP (not LP)

• Constraint set size independent of 

uncertain outcome space size!!

A solution x to the nominal problem is feasible for the reactive repositioning robust 

repositioning problem if and only if for every set of competing arcs K defining an 

inbound closed node set U:

),( kUx
Ka

a 




Return…



S+R Optimization in Logistics

Empty Repositioning

Two-stage Robust Approximations

Robust repositioning results

of empty containers, while regions in Asia and South America correspond to net sinks.

Conditional probability of destination region

Region Probability of Origin 1 2 3 4 5 6 7 8

1 0.15 0 0.10 0.10 0.20 0.15 0.20 0.20 0.05

2 0.35 0.05 0 0.05 0.15 0.10 0.30 0.30 0.05

3 0.10 0.05 0.05 0 0.15 0.10 0.30 0.30 0.05

4 0.10 0.10 0.20 0.10 0 0.10 0.20 0.25 0.05

5 0.05 0.10 0.25 0.15 0.05 0 0.15 0.25 0.05

6 0.05 0.10 0.30 0.15 0.20 0.15 0 0.00 0.10

7 0.10 0.10 0.30 0.15 0.20 0.15 0.00 0 0.10

8 0.10 0.05 0.05 0.10 0.15 0.15 0.20 0.30 0

Table 2: Origin-destination distribution information for loaded demands between regions for

computational test.

To avoid beginning and ending effects created by this approach for generating time-space

net supplies, we truncated the problem horizon. The first 9 weeks and the final 8 weeks were

eliminated from the initial 57 weeks of data, resulting in an instance with a 40 week planning

horizon. The size of the container fleet was set at 600. Initial inventories of containers at

each depot were determined proportional to the probability of a demand originating in its

corresponding region.

Figure 5: Total plan cost by fleet size and value of control parameter k for TRP1 and

TRP2.

The instance was solved using TRP1 and TRP2, where for the latter, reactive repo-

sitioning was only allowed between depots in the same region. Control parameter k was

varied from 0 (i.e., solution to the nominal problem) to 9. Figure 5 summarizes cost results.

28

20 depots, 8 regions
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Empty Repositioning

Two-stage Robust Approximations

Robust repositioning resultsreactive repositioning is allowed between depots in the same region, the plan is recover-

able with respect to the same level of uncertainty, defined by parameter k, with far fewer

containers of inventory per region.

Figure 7: Average inventory per region by value of control parameter k for TRP2 given a

fleet size of 600 containers.
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Inventory builds to hedge against uncertainty
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S+R Optimization in Logistics

Concluding Remarks

What to remember

1 Stochastic and robust optimization are for dynamic decision
planning problems

2 Many ways to e�ectively incorporate parameter uncertainty in
logistics optimization

3 Modeling and treatment of recourse especially critical

4 Ensure that your model is useful (and interesting), then solve
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Concluding Remarks
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