The Latest Advances in Mixed-Integer Programming Solvers

Robert E. Bixby

Gurobi Optimization & Rice University

Ed Rothberg, Zonghao Gu

Gurobi Optimization

Overview

- Two-decades of Progress: 1988-2008
 - Linear Programming
 - Mixed-Integer Programming
- Recent developments: 2008-Present
 - Redesigning MIP
 - Tree of Trees
 - Parallel MIP
 - The bag of tricks
 - Branching
 - Heuristics
 - Cutting planes
 - An example reduction Disjoint subtrees
 - Domination
 - Symmetry testing
- Where are we now
 - Performance summary

Acknowledgement

- I will focus on two solvers
 - CPLEX
 - 1988 2008
 - Gurobi
 - 2009 Present
- There are other very good solvers
 - XPRESS
 - SCIP
 - Alexander Martin, Tobias Achterberg, ZIB

Publicly Available Table http://scip.zib.de/

Two Decades of Progress

Linear Programming

The Foundation

Progress in LP: 1988—2004

(Operations Research, Jan 2002, pp. 3-15, updated in 2004)

Algorithms (machine independent):

Primal *versus* best of Primal/Dual/Barrier 3,300x

• Machines (workstations \rightarrow PCs): 1,600x

• NET: Algorithm \times Machine 5,300,000 \times

(2 months/5300000 ~= 1 second)

Progress in LP

- Algorithm comparison 2004 (CPLEX)
 - Dual simplex vs. primal: Dual 2.70x faster
 - Dual simplex vs. barrier: Dual 1.06x faster
- Algorithm comparison Today (Gurobi)
 - Modest progress in Dual since 2004 (1.4x)
 - In practice LP is viewed as a solved problem
 - But, a word of warning
 - 2% of MIP models are blocked by linear programming

Mixed-Integer Programming Part I

Two Decades of Progress:

1988-2008

A Definition

A mixed-integer program (MIP) is an optimization problem of the form

Minimize
$$c^T x$$

Subject to $Ax = b$
 $l \le x \le u$
some or all x_i integer

MIP solution framework: LP based Branch-and-Bound

- (1) GAP = $0 \Rightarrow$ Proof of optimality
- (2) In practice: Often good enough to have good Solution

Electric Power Generation:

Unit Commitment, Power Dispatch

A Historical Comment

Electrical Power Industry, ERPI GS-6401, June 1989:

Mixed-integer programming (MIP) is a powerful modeling tool, "They are, however, theoretically complicated and computationally cumbersome"

In Other Words: MIP is an interesting "toy", but it just isn't going to work it practice.

And Example Unit-Commitment Model California 7-Day Model

UNITCAL_7: 48939 constraints, 25755 variables (2856 binary)

Reported Results 1999 – machine unknown

2 Day model: 8 hours, no progress

7 Day model: 1 hour to solve initial LP

Desktop PC -- ran full 7-day model CPLEX 6.5 (1999): 22 minutes, optimal

California 7-Day Model

Gurobi Optimizer version 3.0.0 Read MPS format model from file unitcal_7.mps.bz2 Optimize a model with 48939 Rows, 25755 Columns and 127595 NonZeros Presolved: 38804 Rows, 19960 Columns, 105627 Nonzeros Root relaxation: objective 1.945018e+07, 18340 iterations, 0.60 seconds Nodes Current Node Objective Bounds Work Expl Unexpl Obj Depth IntInf | Incumbent BestBd It/Node Time Gap 0 1.9450e+07 0 721 - 1.9450e+07 0 0 1.9596e+07 0 559 - 1.9596e+07 16s - 1.9598e+07 0 0 1.9598e+07 20s 2.066856e+07 1.9598e+07 5.18% 6 217 2.0669e+07 1.9602e+07 13 11 1.9669e+07 5.16% 28 1.9668e+07 9 219 2.0669e+07 1.9605e+07 5.15% 707 35s 36 Η 93 1.998399e+07 1.9605e+07 1.90% 342 100 74 1.9678e+07 17 204 1.9984e+07 1.9606e+07 271 1.972042e+07 1.9606e+07 111 0.58% 170 43s 29 1.964604e+07 1.9606e+07 0.21% 129 438 178 1.9629e+07 11 141 1.9637e+07 1.9609e+07 924 187 1.963578e+07 1.9609e+07 0.13% 51s Н 987 1.963563e+07 1.9611e+07 0.12% 1024 237 1.9630e+07 19 107 1.9636e+07 1.9611e+07 0.12% н 1034 237 1.963556e+07 1.9611e+07 0.12% 92.8 14 501 1.9636e+07 1.9611e+07 0.12% 1144 288 1.9630e+07 1147 290 1.9617e+07 13 595 1.9636e+07 1.9611e+07 0.12% 71s 1153 294 1.9626e+07 17 491 1.9636e+07 1.9611e+07 0.12% 303 1.9611e+07 1163 16 547 1.9636e+07 1.9611e+07 0.12% 120 156s 1170 303 1.9624e+07 20 488 1.9636e+07 1.9611e+07 0.12% 123 166s 1245 294 1.9621e+07 30 399 1.9636e+07 1.9619e+07 0.09% 185s 1673 261 1.9623e+07 35 120 1.9636e+07 1.9623e+07 0.07% 190s Cutting planes: Gomory: 20 Cover: 31 Implied bound: 553 Clique: 61

Explored 2167 nodes (274011 simplex iterations) in 194.37 seconds Optimal solution found (tolerance 1.00e-04)

MIR: 71

Flow cover: 416

Computational History: 1950 –1998

- 1954 Dantzig, Fulkerson, S. Johnson: 42 city TSP
 - Solved to optimality using LP and cutting planes
- 1957 Gomory
 - Cutting plane algorithms
- 1960 Land, Doig, 1965 Dakin
 - B&B
- 1971 MPSX/370
- 1972 UMPIRE
 - LP-based B&B
 - MIP became commercially viable

- 1972 1998 Good B&B remained the state-of-the-art in commercial codes, in spite of
 - Edmonds, polyhedral combinatorics
 - 1973 Padberg, cutting planes
 - 1973 Chvátal, revisited Gomory
 - 1974 Balas, disjunctive programming
 - 1983 Crowder, Johnson, Padberg: PIPX, pure 0/1 MIP
 - 1987 Van Roy and Wolsey: MPSARX, mixed 0/1 MIP
 - TSP, Grötschel, Padberg, ...

1998 ... A New Generation of MIP Codes

- Linear programming
 - Stable, robust dual simplex
- Variable/node selection
 - Influenced by traveling salesman problem
- Primal heuristics
 - 12 different tried at root
 - Retried based upon success
- Node presolve
 - Fast, incremental bound strengthening (very similar to Constraint Programming)

- Presolve numerous small ideas
 - Probing in constraints:

$$\sum x_j \le (\sum u_j)$$
 y, y = 0/1

- \rightarrow $x_j \le u_j y$ (for all j)
- Cutting planes
 - Gomory, mixed-integer rounding (MIR), knapsack covers, flow covers, cliques, GUB covers, implied bounds, zero-half cuts, path cuts

Mining the Theoretical Backlog

CPLEX 6.5

Progress: MIP

Which Single Feature Helps Most?

(After CPLEX 6.5 < 1000 seconds, Before CPLEX 6.5 unsolvable)

Cuts	53.7x
Presolve	10.8x
Variable selection	2.9x
No heuristics	1.4x
No node presolve	1.3x

Progress: MIP

Removing Single Cuts

•	Gomory mixed-integer	2.52x
•	Mixed-integer rounding	1.83x
•	Knapsack cover	1.40x
•	Flow cover	1.22x
•	Implied bound	1.19x
•	Path	1.04x
•	Clique	1.02x
•	GUB cover	1.02x

The BEST of the cuts: MIR & Gomory Mixed Cuts

I. Mixed-Integer Rounding Cut

I. Mixed-Integer Rounding Cut

II. Gomory Mixed Cut

• Given $y, x_i \in Z_+$, and

$$y + \sum a_{ij}x_i = d = \lfloor d \rfloor + f, f > 0$$

- Rounding: Where $a_{ij} = \lfloor a_{ij} \rfloor + f_j$, define $t = y + \sum (\lfloor a_{ij} \rfloor x_i : f_i \le f) + \sum (\lceil a_{ij} \rceil x_i : f_i > f) \in Z$
- Then

$$\sum (f_j x_j : f_j \le f) + \sum (f_j - 1)x_j : f_j > f) = d - t$$

• Disjunction:

$$t \leq \lfloor d \rfloor \Rightarrow \sum (f_j x_j : f_j \leq f) \geq f$$

$$t \geq \lceil d \rceil \Rightarrow \sum ((1-f_j)x_j : f_j > f) \geq 1-f$$

• Combining:

$$\sum ((f_i/f)x_i: f_i \le f) + \sum ([(1-f_i)/(1-f)]x_i: f_i > f) \ge 1$$

Computing Gomory Mixed Cuts

- 1. Make a an ordered list of fractional variables based upon Driebeek penalties.
- Take the first 100. Compute corresponding tableau rows. Reject if coefficient range too big.
- 3. Add to LP.
- 4. Repeat twice.
- 5. Computed only at root. Slack cuts purged at end of root computation.

Some Test Results

- Test set: 1852 real-world MIPs
 - Full library
 - 2791 MIPs
 - Removed:
 - 559 "Easy" MIPs
 - 348 "Duplicates"
 - 22 "Hard" LPs (0.8%)
- Parameter settings
 - Pure defaults
 - 30000 second time limit
- Versions Run
 - CPLEX 1.2 (1991) -- CPLEX 11.0 (2007)

CPLEX MIP Performance Improvements

Recent Developments

Mixed-Integer Programming
Part II

Gurobi Optimization

- Gurobi Optimization, Inc.
 - Founders: **Gu**, **Ro**thberg, **Bi**xby
 - Began Code development March 2008
- The Gurobi Optimizer:
 - ▶ LP simplex and Deterministic Parallel MIP
 - Version 1.0 May 2009
 - Version 2.0 October 2009
 - Version 3.0 April 2010

Redesigning the MIP Solver

Key Ingredients

- For an effective MIP solver, you need ...
 - Heuristics
 - Explore solutions near the relaxation quickly
 - Find feasible solutions at nodes other than leaf nodes
 - Parallelism
 - Presolve
 - Tighten formulation before starting branch & bound
 - Once you start branching, mistakes replicate
 - Branch-variable selection
 - Cutting planes
 - LP dual-simplex solver

A Fresh Look

A Fresh Look

- Start from a clean slate
 - With the benefit of 20+ years of experience
- Things have changed:
 - Two examples:
 - "Sub-MIP" as a pervasive approach
 - Ubiquitous parallel processing

Sub-MIP As A Paradigm

- Key recent insight for heuristics:
 - Can use MIP solver recursively as a heuristic
 - Solve a related model:
 - Hopefully smaller and simpler
 - Examples:
 - Local cuts [Applegate, Bixby, Chvatal & Cook, 2001]
 - Local branching [Fischetti & Lodi, 2003]
 - RINS [Danna, Rothberg, Le Pape, 2005]
 - Solution polishing [Rothberg, 2007]

RINS

- Relaxation Induced Neighborhood Search
 - Given two "solutions":
 - x*: any integer feasible solution (not optimal)
 - x^R: optimal relaxation solution (not integer feasible)
 - Fix variables that agree
 - Solve the result as a MIP
 - Possibly requiring early termination
- Extremely effective heuristic
 - Often finds solutions that no other technique finds

Why Is RINS So Effective?

- MIP models often involve a hierarchy of decisions
 - Some much more important than others
- Fixing variables doesn't just make the problem smaller
 - Often changes the nature of the problem
 - Extreme case:
 - Problem decomposes into multiple, simple problems
 - More general case:
 - Resolving few key decisions can have a dramatic effect
 - Strategies that worked well for the whole problem may not work well for RINS sub-MIP
 - More effective to treat it as a brand new MIP

Rethinking MIP Tree Search

Branch-and-Bound

Each node in branch-and-bound is a new MIP

- Original model, plus several variable fixings
- Can view search tree as a tree-of-trees
- As in RINS, nature of sub-MIP can change dramatically

Tree of Trees

- Gurobi MIP search tree manager built to handle multiple related trees
 - Can transform any node into the root node of a new tree
- Maintains a pool of nodes from all trees
 - No need to dedicate the search to a single subtree

Tree of trees

Tree of Trees

- Each tree has its own relaxation and its own strategies...
 - Presolved model for each subtree
 - Cuts specific to that subtree
 - Pseudo-costs for that subtree only
 - Symmetry detection on that submodel
 - Etc.
- Captures structure that is often not visible in the original model

Parallel MIP

Why Parallel?

- Microprocessor trends have changed
- Transistors are:
 - Still getting smaller
 - But not faster
- Implications:
 - New math for CPUs: more transistors = more cores
 - Sequential software won't be getting significantly faster in the foreseeable future
- Gurobi MIP solver built for parallel from the ground up
 - Sequential is just a special case

Need Deterministic Behavior

- Non-deterministic parallel behavior:
 - Multiple runs with the same inputs can give different results
- "Insanity: doing the same thing over and over again and expecting different results."
 - Albert Einstein
- Conclusion: non-deterministic parallel behavior will drive you insane

Building Blocks

Building Blocks

Parallel MIP is parallel branch-and-bound:

Available for simultaneous processing

Deterministic Parallel MIP

- Multiple phases
- In each phase, on each processor:
 - Explore nodes assigned to processor
 - Report back results
 - New active nodes
 - New solutions
 - New cuts
 - Etc.
- One approach to node assignment:
 - Assign a subtree to each processor
 - Limit amount of exploration in each phase

Deterministic Parallel MIP

• One subtree per processor:

Subtree Partitioning

- Problem:
 - Subtree may quickly prove to be uninteresting
 - Poor relaxation objectives
 - May want to abandon it
 - Pruned quickly
 - Leaves processor idle

More Global Partitioning

Node coloring: assign a color to every node

- Processor can only process nodes of the appropriate color
- New child node same color as parent node
- Perform periodic re-coloring

More Dynamic Node Processing

- Allows much more flexibility
 - Processor can choose from among many nodes of the appropriate color
- Deterministic priority queue data structure required to support node coloring
 - Single global view of active nodes
 - Support notion of node color
 - Processor only receives node of the appropriate color
 - Efficient, frequent node reallocation

Parallel Performance: Realistic Expectations

Realistic Expectations

- Major constraint: sequential phases
 - Presolve
 - Mean for our test set: 3% of runtime
 - Root node
 - Lots of things happening...
 - Solving relaxations, cuts, heuristics, etc.
 - Lots of opportunities for parallelism?
 - Majority of time still in simplex:
 - Mean for our test set: 84% of root runtime
 - Many models solve at the root:
 - Of 55 models in Mittelmann MIP optimality test set
 - 25% solve in fewer than 20 nodes
 - Significant drag on potential improvement

Realistic Expectations

- Multi-core chips share resources
 - Cache
 - Memory access
- Performance doesn't scale perfectly with cores
- Our conclusion: 2x improvement for p=4 is about the most we can expect (3x seems a reasonable guess for p=8)

The Bag of Tricks

Overview

- Two-decades of Progress: 1988-2008
 - Linear Programming
 - Mixed-Integer Programming
- Recent developments: 2008-Present
 - Redesigning MIP
 - Tree of Trees
 - Parallel MIP
 - The bag of tricks
 - Branching
 - Heuristics
 - Cutting planes
 - An example reduction Disjoint subtrees
 - Domination
 - Symmetry testing
- Where are we now
 - Performance summary

Branching

Branching

- Variable branching
 - Max fractional value
 - Worse than random
 - Shadow costs (similar to pseudo costs)
 - Strong branching
 - Traveling salesman problem
 - "Modern" pseudo costs
 - Keep estimate of effect on the objective of branching on a variable – up estimate, down estimate
 - Improve by initializing using strong branching
 - Improve further by applying strong branching multiple times: reliability branching

Branching

- SOS branching
 - Pseudo-cost branching for SOS sets
 - Compute variable pseudo costs by fixing to zero and solving LP
 - Find a split for an infeasible SOS set, x₁, ..., x_k with relaxation solution x*
 - Compute pseudo costs for left and right sets by using sum pcost[i]* x*[i]
 - Combine them
 - Pick the set with maximal combined value

Heuristics

Summary of Heuristics

- 5 heuristics prior to solving root LP
 - 5 different variable orders, fix variables in this order
- 15 heuristics within tree (9 primary, several variations)
 - RINS, RINS diving, rounding, fix and dive (LP), fix and dive (Presolve), fix and dive (simple), Lagrangian approach, pseudo costs, Hail Mary (set objective to 0)
- 3 solution improvement heuristics
 - Applied whenever a new integer feasible is found
- Key tool:
 - Bound strengthening

Managing the Heuristics

- Available parameters
 - Heuristics = fraction of time spent on heuristics (default = 0.05)
 - Submipnodes = number of nodes explored in a submip (default = 500)
 - RINS = frequency of application of RINS.
- Non default heuristic: Feasibility pump (for finding in initial feasible solutions)

Cutting Planes

Cutting Planes

- Gomory
 - Gu ISMP 2006 , strengthen by lifting in GUBs
- Flow covers
 - Strengthened by lifting before un-transforming (Gu thesis)
- MIR
- Knapsack covers
 - From Gu's thesis (separation and lifting)
- Clique
- Implied bound
- Flow paths
 - Results fed into flow covers
- GUB covers
- Zero-half

More Cutting Planes Gurobi 3.0

- New cutting planes
 - Network cuts
 - Submip cuts
- Improvement of existing cut routines
 - Aggregation for MIR and flow covers
 - Cut filter

Network Cuts

- Related to multi-commodity flow cuts
- Finding network structure
 - Use a simple heuristic to find a set of network rows
 - Identify associated fixed-charge indicator variables
- Separation
 - Sort arcs based on relaxation values
 - Use the order to construct a spanning tree (forest)
 - Repeat
 - Remove a non-leaf arc from the spanning tree splits network into two parts
 - Aggregate each of the two parts
 - Look for violated flow-cover cut
- Performance
 - 10% speedup on models with network structure.

SUBMIP Cuts

- Solve submip to generate cuts
 - Expensive
 - Applied dynamically for some more difficult models (not typically applied in defaults)
- Main idea
 - Quite different from ideas that solve a sub-MIP to separate
 - Objective: generate cuts from using a point different from the one from the LP relaxation

Cut Changes Summary

- Overall performance improvement
 - 20% speedup on our internal model set

Disjoint Subtrees

Disjoint Subtrees

- Basic principle of branching:
 - Feasible regions for child nodes after a branch should be disjoint
- Not always the case
- Simple example integer complementarities:
 - $x \le 10 b$
 - $-y \le 10 (1-b)$
 - x, y non-negative ints, $x \le 10$, $y \le 10$, b binary
 - Branch on b: x=y=0 feasible in both children

Recognizing Subtree Overlap

- Problem arises when sole purpose of branching variable is to bound other variables
 - Otherwise, b=0/b=1 split is typically sufficient to make the subtrees disjoint
- Recognizing overlap:
 - Constraints involving branching variable must be redundant after branch
 - Domains of remaining variables must overlap

Removing Overlap

- Simplest way to remove overlap:
 - Modify variable bound in one subtree
- Integer complementarities example:
 - $x \le 10 b$
 - $-y \le 10 (1-b)$
 - Branch on b: x=y=0 feasible in both children
- b=0 child: x = 0, $10 \ge y \ge 0$
- b=1 child: y = 0, $10 \ge x \ge 1$

Performance Impact

- Overlap present in several models
 - 35 out of 510 models in our test set
- Performance impact can be huge
 - Model neos859080 goes from 10000+ seconds to 0.01s
 - Makes it tough to quote mean improvements over a small set
- Median improvement for affected models is ~1%

MIP Domination

MIP Domination

MIP domination

- A feasible solution X is (strictly) dominated by a feasible solution Y, if Y has objective value as good as (better than) X.
- Suppose for any feasible solution X with Xj > a, there exists another feasible solution Y with Yj <= a such that Y dominates X. Then we need only consider xj <= a.
- Use of domination information
 - Reduce or simplify MIP models
 - Avoid unnecessary search

Domination Techniques

- Presolve reductions
- Dominated nodes detection
- Symmetry breaking

A Simple Presolve Reduction

Consider

Parallel columns

 x1 and x2 are parallel and x1 is dominated because of its objective coefficient

Dual Presolve Reductions

Consider

```
Min 5 x1 + 4 x2 + 11 x3 + 2 y1 + 2 y2

s.t. x1 + x2 + 3 x3 + y2 >= 7

2 x1 + 2 x2 + 2 x3 + y1 >= 10

x1, x2, x3, y1, y2 >= 0

x1, x2, x3 are integers
```

Dual bound tightening

- Consider the dual of any relaxation at a B&B node
- Let d1 and d2 be dual variables for two constraints
- Use dual constraints corresponding to y1 and y2, we can tighten dual bounds to d1 <= 2 and d2 <= 2
- Reduced cost for x3 >= 11 3 * 2 2 * 2 = 1, so x3 can be fixed to 0

Another Presolve Reduction

Consider

- -ax+by=c
- x, y are integer variables
- a, b and c are integers, a > 1
- Assume gcd(a,b) = 1
 - Otherwise a Euclidean reduction is possible
- Observation: Then x(mod b) and y(mod a) are constants.

Reduction

- Substitute y = a z + d (d is easy to compute).
- z has a smaller search space than y

General application

Can easily be extended to general "all integer" constraints.

0-1 knapsack example

Min 5 x1 + 6 x2 + 7 x3 + 9 x4 + sum wj xj

$$3 x1 + 4 x2 + 5 x3 + 6 x4 + sum aj xj <= b$$

- At a node
 - -(x1, x2, x3, x4) = (1, 0, 0, 1)
- Let
 - $\cos(x_1, x_2, x_3, x_4) = 5 x_1 + 6 x_2 + 7 x_3 + 9 x_4$
 - a(x1, x2, x3, x4) = 3 x1 + 4 x2 + 5 x3 + 6 x4
- Then
 - $-\cos t(0,1,1,0) < \cos t(1,0,0,1)$
 - a(0,1,1,0) = a(1,0,0,1)
 - The node is dominated

Consider a general MIP

```
Min e<sup>T</sup>x + f<sup>T</sup>y + g<sup>T</sup>z
s.t. A x + B y + C z <= b
A, B and C are matrices
x, y, z are variable vectors
x are binary
some y, z are integer or binary</pre>
```

- At a node
 - x is fixed to x* (via branching)
 - y represent extra "freedom" beyond x
- Note just for simplicity, we assume
 - All constraints are inequalities
 - Variables x are binary

Let

- If $s(y^*) < e^Tx^* + f^Ty^*$ for all y^* , then the node is dominated
- Two alternatives
 - If |x| is small and y is empty, computing s(.) is often cheap. However s(.) < $e^{T}x^{*}$ is rare in those cases.
 - With non-empty y, where y has special properties, we can sometimes solve for $s(y^*)$.

- Fixed charge sub-networks
 - Binary variables indicate whether arcs are open
 - x are the binary variables branched to one
 - Suppose the support of x contains a cycle.
 - Then using y defined by this cycle, we can conclude that the node is dominated.

Definition

```
- Given a MIP
Min { c^Tx \mid Ax \le b, integrality conditions on x}
```

Let

α: a column permutation of A

β: a row permutation of A

PC: a set of all column permutations

PR: a set of all row permutations

A symmetry group is defined as

G = {
$$\alpha$$
 in PC | there exists β in PR, such that $(\beta, \alpha)(A) = A$, $\alpha(c) = c$ and $\beta(b) = b$ }

Exploiting Symmetry

Find symmetry group

Use to improve MIP search

- Finding the Symmetry group
 - Considerable published work on graph automorphisms
 - Several computer programs are available, e.g. NAUTY and SAUCY
 - Easy to translate MIP symmetry problem into graph automorphisms (Puget 2005).

- Exploit in MIP search
 - Several papers over the last 10 years
 - Adding cuts: Rothberg (2000)
 - Fathom symmetric nodes: Margot (2002)
 - Orbit branching: Ostrowski, Linderoth, Rossi, and Smriglio (2007).
 - Commercial MIP software
 - Introduced in CPLEX 9
 - Substantially improved in CPLEX 10

• Gurobi 3.0

- Implemented symmetry detection directly using the matrix
- Apply orbital branching plus several additional ideas
- 28% of models in our test set have symmetry
- Performance is affected on 50% of those with symmetry
- Many unsolvable models become solvable
- 25% geometric speedup on the whole set (including those without symmetry)

Where We Are Now

MIP Performance

A Framework for Viewing MIP Improvements

Improving a MIP Solver

Improvements can be plotted on two axes:

New Ideas

Gurobi 2.0

Speedup

Gurobi 3.0

MIP Performance Benchmarks

- Performance test sets:
 - Mittelmann optimality test set:
 - 55 models, varying degrees of difficulty
 - http://plato.asu.edu/ftp/milpc.html
 - Mittelmann feasibility test set:
 - 33 models, difficult to find feasible solutions
 - http://plato.asu.edu/ftp/feas bench.html
 - Mittelmann infeasibility test set:
 - 11 models, objective is to prove infeasibility
 - http://plato.asu.edu/ftp/infeas.html
 - Our own broader test set:
 - A set of 2458 models
- Test platform:
 - Q9450 (2.66 GHz, quad-core system)

MIP Performance – Gurobi Internal Test Set

- Gurobi V2.0 vs. V1.0 (p=4)
 - 2340 total models in test set
 - 1309 solved by both in < 1 second (removed)
 - 650 solved by at least one in < 10000 seconds
 - 381 solved by neither in < 10000 seconds
- Gurobi V3.0 vs. V2.0 (p=4)
 - 2458 total models in test set
 - 1350 solved by both in < 1 second (removed)
 - 794 solved by at least one in < 10000 seconds
 - 314 solved by neither in < 10000 seconds

MIP Performance – Gurobi Internal Test Set

Gurobi V2.0 versus V1.0 (P=4)

Time	# Models	Speedup
> 1s	650	1.7x
> 10s	410	1.9x
> 100s	210	2.2x
> 1000s	59	3.9x

Gurobi V3.0 versus V2.0 (P=4) (bigger test set)

Time	# Models	Speedup
> 1s	794	1.6x
> 10s	521	2.0x
> 100s	295	2.9x
> 1000s	144	6.7x

MIP Performance – Public Benchmarks

• Gurobi 3.0 vs. CPLEX 12.1:

	P=1	P=4
Optimality	1.75X	1.87X
Feasibility	4.76X	-
Infeasibility	-	4.09X

Parallel Performance

Parallel Performance (V2.0 data)

Parallel speedups (Gurobi P=1 vs P=4):

	P=4 speedup
>1s	1.54
>10s	1.64
>100s	1.79

Thank You