The Latest Advances in Mixed-
Integer Programming Solvers

Robert E. Bixby

Gurobi Optimization & Rice University

Ed Rothberg, Zonghao Gu

Gurobi Optimization



Overview

Two-decades of Progress: 1988-2008
— Linear Programming

— Mixed-Integer Programming
Recent developments: 2008-Present
— Redesigning MIP
* Tree of Trees
* Parallel MIP
— The bag of tricks
* Branching
* Heuristics
e Cutting planes
* An example reduction — Disjoint subtrees
* Domination
— Symmetry testing
Where are we now

— Performance summary



Acknowledgement

e | will focus on two solvers

— CPLEX
* 1988 -2008

— Gurobi
e 2009 — Present
 There are other very good solvers
— XPRESS

— SCIP
e Alexander Martin, Tobias Achterberg, ZIB



15.4x 15.9x | 6.6x

1500 [

1000 |-

time in seconds

200

0
not solved 73%

Publicly Available Table
http://scip.zib.de/

non-commercial | commercial

5.27Tx

0.20x ().12x

T6% 38% 20% 1% 7% 53% 5% 4% 4%

B GLPK 4.43

B lpsolve 5.5

B Symphony 5.2.3

B CBC 2.4.0

[l SCIP 1.2 - SoPlex 1.4.2
] SCIP 1.2 — CLP 1.10.1
B Minto 3.1 — Cplex 9

B SCIP 1.2 — Cplex 12.1

B Cplex 12.1

E Gurobi 3.0.0



Two Decades of Progress



Linear Programming

The Foundation



Progress in LP: 1988—2004

(Operations Research, Jan 2002, pp. 3—15, updated in 2004)

o Algorithms (machine independent):

Primal versus best of Primal/Dual/Barrier 3,300x
* Machines (workstations —PCs): 1,600x
e NET: Algorithm x Machine 5,300,000x

(2 months/5300000 ~= 1 second)



Progress in LP

e Algorithm comparison — 2004 (CPLEX)

— Dual simplex vs. primal:  Dual 2.70x faster
— Dual simplex vs. barrier: Dual 1.06x faster

e Algorithm comparison — Today (Gurobi)
— Modest progress in Dual since 2004 (1.4x)
— In practice LP is viewed as a solved problem
— But, .... a word of warning

e 2% of MIP models are blocked by linear programming



Mixed-Integer Programming
Part |

Two Decades of Progress:
1988-2008



A Definition

A mixed-integer program (MIP) is an optimization
problem of the form

Minimize c' X
Subjectto Ax =D
| <x<u
some or all x; integer




MIP solution framework:
LP based Branch-and-Bound

Solve LP relaxation:
v=3.5 (fractional)

Remarks:
(1) GAP =0 = Proof of optimality
(2) In practice: Often good enough to have good Solution

11



Electric Power Generation:
Unit Commitment, Power Dispatch



A Historical Comment

Electrical Power Industry, ERPI GS-6401, June 19809:
Mixed-integer programming (MIP) is a powerful
modeling tool, “They are, however, theoretically
complicated and computationally cumbersome”

In Other Words: MIP is an interesting “toy”, but it
just isn’t going to work it practice.

13



And Example Unit-Commitment Model
California 7-Day Model

UNITCAL_7: 48939 constraints, 25755 variables (2856 binary)

Reported Results 1999 — machine unknown
2 Day model: 8 hours, no progress
/ Day model: 1 hour to solve initial LP

Desktop PC -- ran full 7-day model
CPLEX 6.5 (1999): 22 minutes, optimal



California 7-Day Model|

Gurobi Optimizer version 3.0.0

Read MPS format model from Ffile unitcal_7.mps.bz2

Optimize a model with 48939 Rows, 25755 Columns and 127595 NonZeros
Presolved: 38804 Rows, 19960 Columns, 105627 Nonzeros

Root relaxation: objective 1.945018e+07, 18340 iterations, 0.60 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth Intinf | Incumbent BestBd Gap | 1t/Node Time

0 0 1.9450e+07 0 721 - 1.9450e+07 - - 2s

0 0 1.9596e+07 0 559 - 1.9596e+07 - - 16s

0 0 1.9598e+07 0 487 - 1.9598e+07 - - 20s

H 0 0 2.066856e+07 1.9598e+07 5.18% - 25s
13 11 1.9669e+07 6 217 2.0669e+07 1.9602e+07 5.16% 649  30s

36 28 1.9668e+07 9 219 2.0669e+07 1.9605e+07 5.15% 707 35s

H 93 84 1.998399e+07 1.9605e+07 1.90% 342  37s
100 74 1.9678e+07 17 204 1.9984e+07 1.9606e+07 1.89% 321  43s

* 271 111 54 1.972042e+07 1.9606e+07 0.58% 170 43s

—>H 417 29 1.964604e+07 1.9606e+07 0.21% 129 43s <

858 178 1.9629e+07 11 141 1.9637e+07 1.9609e+07 0.14% 96.9  50s

H 924 187 1.963578e+07 1.9609e+07 0.13% 94.6 51s
H 987 221 1.963563e+07 1.9611e+07 0.12% 93.9 53s
1024 237 1.9630e+07 19 107 1.9636e+07 1.9611e+07 0.12% 93.5 56s

H 1034 237 1.963556e+07 1.9611e+07 0.12% 92.8  56s
1144 288 1.9630e+07 14 501 1.9636e+07 1.9611e+07 0.12% 89.0 63s
1147 290 1.9617e+07 13 595 1.9636e+07 1.9611e+07 0.12% 88.8 71s
1153 294 1.9626e+07 17 491 1.9636e+07 1.9611e+07 0.12% 88.3 80s
1163 303 1.9611le+07 16 547 1.9636e+07 1.9611e+07 0.12% 120 156s
1170 303 1.9624e+07 20 488 1.9636e+07 1.9611le+07 0.12% 123 166s
1245 294 1.9621e+07 30 399 1.9636e+07 1.9619e+07 0.09% 131 185s
1673 261 1.9623e+07 35 120 1.9636e+07 1.9623e+07 0.07% 117 190s

Cutting planes:
Gomory: 20
Cover: 31
Implied bound: 553
Clique: 61
MIR: 71
Flow cover: 416

Explored 2167 nodes (274011 simplex iterations) in 194_37 seconds
Optimal solution found (tolerance 1.00e-04)



Computational History:
1950 —1998

1954 Dantzig, Fulkerson, S.
Johnson: 42 city TSP

= Solved to optimality using LP and
cutting planes

1957 Gomory
= Cutting plane algorithms

1960 Land, Doig, 1965 Dakin
= B&B
1971 MPSX/370
1972 UMPIRE
= LP-based B&B
=  MIP became commercially viable

= 1972 —1998 Good B&B remained

the state-of-the-art in commercial
codes, in spite of ....

Edmonds, polyhedral combinatorics
1973 Padberg, cutting planes

1973 Chvatal, revisited Gomory
1974 Balas, disjunctive programming

1983 Crowder, Johnson, Padberg:
PIPX, pure 0/1 MIP

1987 Van Roy and Wolsey: MPSARX,
mixed 0/1 MIP

TSP, Grotschel, Padberg, ...



1998 ... A New Generation of MIP Codes

Linear programming

Stable, robust dual simplex

Variable/node selection

Influenced by traveling salesman
problem

Primal heuristics

12 different tried at root
Retried based upon success

Node presolve

Fast, incremental bound
strengthening (very similar to
Constraint Programming)

Presolve — numerous small
ideas

Probing in constraints:
Yx <(Xu)y, y=0/1
=> x; < uy (for all j)

Cutting planes

Gomory, mixed-integer rounding
(MIR), knapsack covers, flow
covers, cliques, GUB covers,
implied bounds, zero-half cuts,
path cuts



Mining the Theoretical Backlog



Progress: MIP

Which Single Feature Helps Most?

(After CPLEX 6.5 < 1000 seconds, Before CPLEX 6.5 unsolvable)

= Cuts 53.7X
" Presolve 10.8x
" Variable selection 2.9X
" No heuristics 1.4x

" No node presolve 1.3x



Progress: MIP

Removing Single Cuts

Gomory mixed-integer
Mixed-integer rounding
Knapsack cover

Flow cover

Implied bound

Path

Clique

GUB cover

2.52x
1.83x
1.40x
1.22x
1.19x
1.04x
1.02x
1.02x

20



The BEST of the cuts:
MIR & Gomory Mixed Cuts



(0, 3.5)

l. Mixed-Integer Rounding Cut

22



l. Mixed-Integer Rounding Cut

2.0

1.0

\

.\ Generalformula:x +y=>b=x/f+y=> b

23



Il. Gomory Mixed Cut

Given y, x; € Z,, and
y+2ax=d = Ld]+f f>0
Rounding: Where a,=|a ] +f, define
t=y+ Z(Laijjxj: f,<f)+ Z(Faﬂxj: f>f) ez
Then
2(fx: f <)+ 2(f-1)x: f,>f) =d -t
Disjunction:
t<ld]=X(fx:f<f) >f
t2ld[= X((1-f)x: ;> ) > 1
Combining:

2((F/F)x: ;<) + 2([(1-F)/(1-F)]x;: f;>f) > 1

24



Computing Gomory Mixed Cuts

. Make a an ordered list of fractional variables
based upon Driebeek penalties.

. Take the first 100. Compute corresponding
tableau rows. Reject if coefficient range too
big.

. Add to LP.

. Repeat twice.

. Computed only at root. Slack cuts purged at
end of root computation.



Some Test Results

e Testset: 1852 real-world MIPs

— Full library
e 2791 MIPs

— Removed:
e 559  “Easy” MIPs
e 348  “Duplicates”
e 22 “Hard” LPs (0.8%)
e Parameter settings

— Pure defaults
— 30000 second time limit

e \ersions Run
— CPLEX 1.2(1991)-- CPLEX 11.0 (2007)

26



CPLEX MIP Performance Improvements

10

VYarsion-to-Yarsion Spesdup
14

‘ EmmV-\/ Speedup  ——Cumulative Speedup ‘

q
1

Y
4

L)
4

6\-“‘—

Mined Theoretical
Backlog: 1998

Mature Dual

Simplex: 1994

/

100000

12 .24 21 3

3 4

CPLEX Version-to-Version Pairs

10 »11

29530X

T 1000

ol

5555571 7.1 -8

—
o
(=]

10

- 10000

Cumulative Speedup

27




Recent Developments



Gurobi Optimization

» Gurobi Optimization, Inc.
» Founders: Gu, Rothberg, Bixby
» Began Code development March 2008
» The Gurobi Optimizer:
» LP simplex and Deterministic Parallel MIP
» Version 1.0 — May 2009
» Version 2.0 — October 2009
» Version 3.0 — April 2010



Redesigning the MIP Solver



Key Ingredients

 For an effective MIP solver, you need ...

— Heuristics
e Explore solutions near the relaxation quickly
* Find feasible solutions at nodes other than leaf nodes

— Parallelism

— Presolve
e Tighten formulation before starting branch & bound
 Once you start branching, mistakes replicate

— Branch-variable selection
— Cutting planes
— LP dual-simplex solver



A Fresh Look



A Fresh Look

e Start from a clean slate
— With the benefit of 20+ years of experience

 Things have changed:

— Two examples:
e “Sub-MIP” as a pervasive approach
e Ubiquitous parallel processing



Sub-MIP As A Paradigm

e Key recent insight for heuristics:
— Can use MIP solver recursively as a heuristic
— Solve a related model:

 Hopefully smaller and simpler

— Examples:

Local cuts [Applegate, Bixby, Chvatal & Cook, 2001]
Local branching [Fischetti & Lodi, 2003]

RINS [Danna, Rothberg, Le Pape, 2005]

Solution polishing [Rothberg, 2007]



RINS

e Relaxation Induced Neighborhood Search

— Given two “solutions”:
e x*:any integer feasible solution (not optimal)
e xR: optimal relaxation solution (not integer feasible)

— Fix variables that agree
— Solve the result as a MIP
e Possibly requiring early termination
e Extremely effective heuristic
— Often finds solutions that no other technique finds



Why Is RINS So Effective?

e MIP models often involve a hierarchy of decisions
— Some much more important than others

e Fixing variables doesn’t just make the problem
smaller

— Often changes the nature of the problem

* Extreme case:
— Problem decomposes into multiple, simple problems

 More general case:
— Resolving few key decisions can have a dramatic effect
— Strategies that worked well for the whole problem
may not work well for RINS sub-MIP

e More effective to treat it as a brand new MIP



Rethinking MIP Tree Search



Branch-and-Bound

e Each node in branch-and-bound is a new MIP

» Original model, plus
several variable
fixings
» Can view search tree as é }%
a tree-of-trees
» As in RINS, nature of ‘ ‘ i

sub-MIP can change
dramatically

38



Tree of Trees

e Gurobi MIP search tree manager built to
handle multiple related trees

— Can transform any node into the root node of a
new tree

 Maintains a pool of nodes from all trees

— No need to dedicate the search to a single sub-
tree



Tree of trees

Node pool:

Search tree:

40



Tree of Trees

e Each tree has its own relaxation and its own
strategies...

— Presolved model for each subtree

— Cuts specific to that subtree

— Pseudo-costs for that subtree only

— Symmetry detection on that submodel
— Etc.

e Captures structure that is often not visible in
the original model



Parallel MIP



Why Parallel?

Microprocessor trends have changed

Transistors are:
— Still getting smaller
— But not faster
Implications:
— New math for CPUs: more transistors = more cores

— Sequential software won’t be getting significantly
faster in the foreseeable future

Gurobi MIP solver built for parallel from the
ground up

— Sequential is just a special case



Need Deterministic Behavior

 Non-deterministic parallel behavior:

— Multiple runs with the same inputs can give
different results

* “Insanity: doing the same thing over and over
again and expecting different results.”
— Albert Einstein

e Conclusion: non-deterministic parallel
behavior will drive you insane



Building Blocks



Building Blocks

e Parallel MIP is parallel branch-and-bound:

i
\\f/

Available for simultaneous processing



Deterministic Parallel MIP

e Multiple phases

* |n each phase, on each processor:
— Explore nodes assigned to processor

— Report back results
e New active nodes
e New solutions
* New cuts
e Etc.

 One approach to node assignment:
— Assign a subtree to each processor
— Limit amount of exploration in each phase



Deterministic Parallel MIP

e One subtree per processor:

%

18 3:9:8
AAA%




Subtree Partitioning

* Problem:

— Subtree may quickly prove to be uninteresting
e Poor relaxation objectives
— May want to abandon it

e Pruned quickly

— Leaves processor idle



More Global Partitioning

 Node coloring: assign a color to every node

e

» Processor can only process nodes of the appropriate
color

» New child node same color as parent node
» Perform periodic re-coloring

50



More Dynamic Node Processing

e Allows much more flexibility

— Processor can choose from among many nodes of
the appropriate color

e Deterministic priority queue data structure
required to support node coloring
— Single global view of active nodes

— Support notion of node color
e Processor only receives node of the appropriate color

— Efficient, frequent node reallocation



Parallel Performance:
Realistic Expectations



Realistic Expectations

e Major constraint: sequential phases

— Presolve
e Mean for our test set: 3% of runtime

— Root node

e Lots of things happening...
— Solving relaxations, cuts, heuristics, etc.

* Lots of opportunities for parallelism?
e Majority of time still in simplex:
— Mean for our test set: 84% of root runtime
— Many models solve at the root:
e Of 55 models in Mittelmann MIP optimality test set
— 25% solve in fewer than 20 nodes

— Significant drag on potential improvement



Realistic Expectations

 Multi-core chips share resources

— Cache
— Memory access

 Performance doesn’t scale perfectly with
cores
 Our conclusion: 2x improvement for p=4 is

about the most we can expect (3x seems a
reasonable guess for p=8)



The Bag of Tricks



Overview

Two-decades of Progress: 1988-2008
— Linear Programming

— Mixed-Integer Programming
Recent developments: 2008-Present
— Redesigning MIP
* Tree of Trees
* Parallel MIP
— The bag of tricks
* Branching
* Heuristics
e Cutting planes
* An example reduction — Disjoint subtrees
* Domination
— Symmetry testing
Where are we now

— Performance summary



Branching



Branching

e Variable branching

— Max fractional value
e Worse than random

— Shadow costs (similar to pseudo costs)

— Strong branching
* Traveling salesman problem

— “Modern” pseudo costs

e Keep estimate of effect on the objective of branching on a
variable — up estimate, down estimate

e Improve by initializing using strong branching

e Improve further by applying strong branching multiple
times: reliability branching



Branching

e SOS branching

— Pseudo-cost branching for SOS sets

e Compute variable pseudo costs by fixing to zero and
solving LP

Find a split for an infeasible SOS set, x, ..., x, with
relaxation solution x*

e Compute pseudo costs for left and right sets by using
sum pcost[i]* x*[i]

Combine them

Pick the set with maximal combined value



Heuristics



Summary of Heuristics

5 heuristics prior to solving root LP
— 5 different variable orders, fix variables in this order

15 heuristics within tree (9 primary, several
variations)

— RINS, RINS diving, rounding, fix and dive (LP), fix and
dive (Presolve), fix and dive (simple), Lagrangian
approach, pseudo costs, Hail Mary (set objective to 0)

3 solution improvement heuristics
— Applied whenever a new integer feasible is found

Key tool:
— Bound strengthening



Managing the Heuristics

* Available parameters

— Heuristics = fraction of time spent on heuristics
(default = 0.05)

— Submipnodes = number of nodes explored in a
submip (default = 500)

— RINS = frequency of application of RINS.

 Non default heuristic: Feasibility pump (for
finding in initial feasible solutions)



Cutting Planes



Cutting Planes

Gomory
— Gu ISMP 2006, strengthen by lifting in GUBs

Flow covers
— Strengthened by lifting before un-transforming (Gu thesis)

MIR
Knapsack covers

— From Gu’s thesis (separation and lifting)
Cligue
Implied bound
Flow paths

— Results fed into flow covers

GUB covers
Zero-half



More Cutting Planes
Gurobi 3.0

 New cutting planes
— Network cuts
— Submip cuts
 Improvement of existing cut routines

— Aggregation for MIR and flow covers
— Cut filter



Network Cuts

Related to multi-commodity flow cuts

Finding network structure
— Use a simple heuristic to find a set of network rows
— ldentify associated fixed-charge indicator variables

Separation
— Sort arcs based on relaxation values
— Use the order to construct a spanning tree (forest)

— Repeat

* Remove a non-leaf arc from the spanning tree splits network into two
parts

e Aggregate each of the two parts
e Look for violated flow-cover cut

Performance
— 10% speedup on models with network structure.



SUBMIP Cuts

e Solve submip to generate cuts
— Expensive

— Applied dynamically for some more difficult
models (not typically applied in defaults)

e Main idea

— Quite different from ideas that solve a sub-MIP to
separate

— Objective: generate cuts from using a point
different from the one from the LP relaxation



Cut Changes Summary

e Overall performance improvement

— 20% speedup on our internal model set



Disjoint Subtrees



Disjoint Subtrees

e Basic principle of branching:

— Feasible regions for child nodes after a branch
should be disjoint

 Not always the case

 Simple example — integer complementarities:
—x<10b
—y<10(1-b)
— X, Y hon-negative ints, x <10, y £10, b binary
— Branch on b: x=y=0 feasible in both children



Recognizing Subtree Overlap

* Problem arises when sole purpose of
branching variable is to bound other
variables

— Otherwise, b=0/b=1 split is typically sufficient
to make the subtrees disjoint
e Recognizing overlap:

— Constraints involving branching variable must
be redundant after branch

— Domains of remaining variables must overlap



Removing Overlap

Simplest way to remove overlap:

— Modify variable bound in one subtree

Integer

complementarities example:

—x<10b
—y <10 (1-b)

— Branc
b=0 chi
b=1 chi

n on b: x=y=0 feasible in both children

d:x=0,102y2>0

d:y=0,10>2x2>1



Performance Impact

e QOverlap present in several models
— 35 out of 510 models in our test set

 Performance impact can be huge

— Model neos859080 goes from 10000+ seconds
to 0.01s

— Makes it tough to quote mean improvements
over a small set

e Median improvement for affected models is
~1%



MIP Domination



MIP Domination

e MIP domination

— A feasible solution X is (strictly) dominated by a feasible
solution Y, if Y has objective value as good as (better
than) X.

— Suppose for any feasible solution X with Xj > a, there
exists another feasible solution Y with Yj <= a such that
Y dominates X. Then we need only consider xj <= a.

e Use of domination information
— Reduce or simplify MIP models
— Avoid unnecessary search



Domination Techniques

* Presolve reductions
e Dominated nodes detection
e Symmetry breaking



A Simple Presolve Reduction

 Consider
Min 5 X1 + 4 x2 + 11 X3 + 2 y1l + 2 y2
s.t. x1 + X2 + 3 X3 + + y2 >= 7
2 X1 + 2 x2 + 2 X3 + yl >= 10

X1, x2, X3, yl, y2 >= 0
X1, X2, X3 are integers

 Parallel columns

— x1 and x2 are parallel and x1 is dominated because of its objective
coefficient



Dual Presolve Reductions

Consider

Min 5 X1 + 4 x2 + 11 X3 + 2 y1l + 2 y2

s.t. x1 + X2 + 3 X3 + y2 >= 7
2 X1 + 2 x2 + 2 X3 + yl >= 10

X1, x2, X3, yl, y2 >= 0
X1, X2, X3 are integers

Dual bound tightening
— Consider the dual of any relaxation at a B&B node
— Let d1 and d2 be dual variables for two constraints

— Use dual constraints corresponding to y1 and y2, we can tighten dual
boundstodl <=2 and d2<=2

— Reduced costforx3>=11-3*2-2%*2=1, sox3 can be fixedto 0



Another Presolve Reduction

e Consider

—ax+by=c

— X, y are integer variables

— a,band careintegers,a>1

— Assume gcd(a,b) =1

e Otherwise a Euclidean reduction is possible

— Observation: Then x(mod b) and y(mod a) are constants.
e Reduction

— Substitutey=a z + d (d is easy to compute).

— z has a smaller search space thany
 General application

— Can easily be extended to general “all integer” constraints.



Dominated Nodes

0-1 knapsack example
MIn 5 X1 + 6 X2 + 7 X3 + 9 x4 + sum wj XJ
3x1 +4x2+5x3+6x4+ sumaj Xxj <=b
At a node
— (x1,x2,x3,x4)=(1,0,0, 1)
Let
— cost(x1, x2,x3,x4)=5x1+6x2+7x3 +9x4
— a(x1,x2,x3,x4)=3x1+4x2+5x3+6x4
Then
— cost(0,1,1,0) < cost(1,0,0,1)
- a(0,1,1,0)=a(1,0,0,1)
— The node is dominated



Dominated Nodes

e Consider a general MIP
Min e'x + fly + g'z
s.t. AxX+By+Cz<=0Db
A, B and C are matrices
X, Y, z are variable vectors
X are binary
some y, z are integer or binary

e Atanode
— x is fixed to x* (via branching)
— vy represent extra “freedom” beyond x
 Note just for simplicity, we assume
— All constraints are inequalities
— Variables x are binary



Dominated Nodes

e Let
s(y*) = Min e'x + fly
s.t. AX+By<=AX*+By*
X are binary
some y are integer or binary

o [fs(y*)<ex* +fly* for all y*, then the node is dominated

 Two alternatives
— If | x| is small and y is empty, computing s(.) is often cheap. However
s(.) < e™x* is rare in those cases.
— With non-empty y, where y has special properties, we can sometimes
solve for s(y*).



Dominated Nodes

* Fixed charge sub-networks
— Binary variables indicate whether arcs are open
— x are the binary variables branched to one
— Suppose the support of x contains a cycle.

— Then using y defined by this cycle, we can
conclude that the node is dominated.



Symmetry

e Definition
— Given a MIP
Min { c'x | A x <= b, integrality conditions on x}
— Let
o a column permutation of A
B: a row permutation of A
PC: a set of all column permutations
PR: a set of all row permutations

— A symmetry group is defined as
G ={a in PC | there exists B in PR, such that
(B,a)(A) =A, alc) = cand B(b) = b}



Exploiting Symmetry

* Find symmetry group

e Use to improve MIP search



Symmetry

* Finding the Symmetry group

— Considerable published work on graph
automorphisms

e Several computer programs are available, e.g. NAUTY
and SAUCY

— Easy to translate MIP symmetry problem into
graph automorphisms (Puget 2005).



Symmetry

 Exploit in MIP search

— Several papers over the last 10 years
e Adding cuts: Rothberg (2000)
e Fathom symmetric nodes: Margot (2002)
e Orbit branching: Ostrowski, Linderoth, Rossi, and
Smriglio (2007).
— Commercial MIP software
e Introduced in CPLEX 9
e Substantially improved in CPLEX 10



Symmetry

Gurobi 3.0

Implemented symmetry detection directly using the matrix
Apply orbital branching plus several additional ideas

28% of models in our test set have symmetry

Performance is affected on 50% of those with symmetry
Many unsolvable models become solvable

25% geometric speedup on the whole set (including those without
symmetry)



Where We Are Now



A Framework for Viewing MIP
Improvements



Improving a MIP Solver

 Improvements can be plotted on two axes:

Speedup

N

Big speedups on

Big speedups on
a few models

lots of models

Modest speedups
on lots of models

Generality



New ldeas

Speedup
\\

Nine out of ten
ideas end up here

N

Experience — .

generally keeps Generality g

you away from here

92



Gurobi 2.0

Speedu
p p Node files
(O
SOS improvements , _
Dual Simplex improvements
()
Zero-half cuts
(O
()

Parallel irgrovements
@)

g

Generality

93



Speedup

New pf

Ne

Gurobi 3.0

Symmetry

esolve red.
SubMIP cuts
fwork cuts

O Barrier
® @

® @ Cut tuning
® @

g

Generality

94



MIP Performance Benchmarks

e Performance test sets:

— Mittelmann optimality test set:
* 55 models, varying degrees of difficulty
e http://plato.asu.edu/ftp/milpc.html

— Mittelmann feasibility test set:
* 33 models, difficult to find feasible solutions
e http://plato.asu.edu/ftp/feas bench.html

— Mittelmann infeasibility test set:
* 11 models, objective is to prove infeasibility
e http://plato.asu.edu/ftp/infeas.html

— Our own broader test set:
e Aset of 2458 models
e Test platform:
— Q9450 (2.66 GHz, quad-core system)




MIP Performance —
Gurobi Internal Test Set

* Gurobi V2.0 vs. V1.0 (p=4)

— 2340 total models in test set

e 1309 solved by both in < 1 second (removed)
e 650 solved by at least one in < 10000 seconds
e 381 solved by neither in < 10000 seconds

* Gurobi V3.0 vs. V2.0 (p=4)

— 2458 total models in test set
e 1350 solved by both in < 1 second (removed)
e 794 solved by at least one in < 10000 seconds
e 314 solved by neither in < 10000 seconds



MIP Performance —
Gurobi Internal Test Set

= Gurobi V2.0 versus V1.0 (P=4)

Time # Models Speedup
> 1s 650 1.7x
> 10s 410 1.9x
> 100s 210 2.2x
>1000s 59 3.9x

= Gurobi V3.0 versus V2.0 (P=4) (bigger test set)

Time # Models Speedup
> 1s 794 1.6x
> 10s 521 2.0x
> 100s 295 2.9x
> 1000s 144 6.7x




MIP Performance —
Public Benchmarks

« Gurobi 3.0 vs. CPLEX 12.1:

P=1 P=4
Optimality 1.75X 1.87X
Feasibility 4.76X
Infeasibility - 4.09X




Parallel Performance



Parallel Performance (V2.0 data)

= Parallel speedups (Gurobi P=1 vs P=4):

P=4 speedup
>1s 1.54
>10s 1.64

>100s 1.79

100



Thank You



