Journées de l'optimisation 2017

HEC Montréal, 8-10 mai 2017

1er Atelier Canadien sur l'optimisation des soins de santé (CHOW)

HEC Montréal, 10-11 mai 2017


HEC Montréal, 8 — 11 mai 2017

Horaire Auteurs Mon horaire
Cal add eabad1550a3cf3ed9646c36511a21a854fcb401e3247c61aefa77286b00fe402

TB5 Méthodes statistiques / Statistical methods

9 mai 2017 10h30 – 12h10

Salle: Nancy et Michel-Gaucher

Présidée par Martin Cousineau

3 présentations

  • Cal add eabad1550a3cf3ed9646c36511a21a854fcb401e3247c61aefa77286b00fe402
    10h30 - 10h55

    Dynamic programming for valuing American options under variance-gamma process

    • Rim Cherif, HEC Montréal
    • Hatem Ben Ameur, GERAD, HEC Montréal
    • Bruno Rémillard, HEC Montréal

    Lévy processes provide a solution to overcome the shortcomings of the lognormal hypothesis. A growing literature proposes the use of pure-jump Lévy processes such the variance-gamma model. In this setting, explicit solutions for derivative prices are unavailable, for instance for the valuation of American options. We propose a dynamic programming approach coupled with finite elements for valuing American-style options under an extended variance-gamma model. Our numerical experiments confirm the convergence and show the efficiency of the proposed methodology. We also conduct a numerical investigation that focuses on American options on the S&P 500 futures contracts.

  • Cal add eabad1550a3cf3ed9646c36511a21a854fcb401e3247c61aefa77286b00fe402
    10h55 - 11h20

    A QR-Factorization-Based Algorithm for Constrained Least-Squares Problems

    • Andrew Lambe, Présentateur, École Polytechnique de Montréal
    • Dominique Orban, GERAD - Polytechnique Montréal

    We present an interior-point method for linear least-squares problems with both equality and inequality constraints. The algorithm is based on a QR factorization of the least-squares operator rather than a symmetric indefinite factorization of the KKT matrix to improve numerical stability. We show several formulations of the KKT system and their solution using QR factorization. Numerical results demonstrate the effectiveness of the method.

  • Cal add eabad1550a3cf3ed9646c36511a21a854fcb401e3247c61aefa77286b00fe402
    11h20 - 11h45

    Kernel Mean Matching for Causal Inference

    • Martin Cousineau, McGill University
    • Susan A. Murphy, University of Michigan
    • Joelle Pineau, McGill University
    • Vedat Verter, McGill University

    Computing a causal effect from observational data needs to be done carefully in order to obtain an unbiased estimate. In this talk, we give a short introduction to causal inference and to the existing approaches that accomplish this task. We then show how to adapt kernel mean matching, an approach designed for the covariate shift problem in machine learning, in order to compute a causal effect from observational data. We also show how to improve the tuning phase of this approach. We finish by comparing this approach to the state-of-the-art using data from a realistic generative model.