Journées de l'optimisation 2017

HEC Montréal, 8-10 mai 2017

1er Atelier Canadien sur l'optimisation des soins de santé (CHOW)

HEC Montréal, 10-11 mai 2017

JOPT2017

HEC Montréal, 8 — 11 mai 2017

Horaire Auteurs Mon horaire
Cal add eabad1550a3cf3ed9646c36511a21a854fcb401e3247c61aefa77286b00fe402

Séance plénière 3 / Plenary Session 3

9 mai 2017 09h00 – 10h00

Salle: Amphithéâtre Banque Nationale

Présidée par Nadia Lahrichi

1 présentation

  • Cal add eabad1550a3cf3ed9646c36511a21a854fcb401e3247c61aefa77286b00fe402
    09h00 - 10h00

    Using second-order information in training large-scale machine learning models

    • Katya Scheinberg, Présentateur, Lehigh University

    We will give a broad overview of the recent developments in using deterministic and stochastic second-order information to speed up optimization methods for problems arising in machine learning. Specifically, we will show how such methods tend to perform well in convex setting but often fail to provide improvement over simple methods, such as stochastic gradient descent, when applied to large-scale nonconvex deep learning models. We will discuss the difficulties faced by quasi-Newton methods that rely on stochastic first order information and Hessian-Free methods that use stochastic second order information.

Retour