Incluant une Journée industrielle de l'optimisation
HEC Montréal, 7 - 9 mai 2012
JOPT2012
HEC Montréal, 7 — 9 mai 2012
TD9 Optimisation stochastique / Stochastic Optimization
8 mai 2012 15h30 – 17h10
Salle: Xerox Canada
Présidée par Patrick Jaillet
4 présentations
-
15h30 - 15h55
A Trust-Region Regularization for Progressive Hedging Algorithm
Progressive hedging algorithm, while twenty years old, remains popular in multistage stochastic programming due to the natural parallelization opportunities it offers. In particular, the method is still of importance for linear and convex problems, and has also received attention for mixed integer linear stochastic programs. The use of a penalty quadratic term to enforce the non-anticipative decisions is important to ensure good numerical properties, but inherently produces a nonlinear problem. We explore here the use of a trust-region regularization in place of the quadratic penalty term, preserving linearity when present. This allows the use of dedicated linear solvers, while enforcing that non-anticipativity constraints are not violated in a too large extent.
-
15h55 - 16h20
Stochastic Dual Dynamic Programming on Reservoir Operation with Uncertainty
We present a stochastic dual dynamic programming model that generates water value functions for multi-year reservoir operation in BC Hydro’s multi-reservoir hydro-electric system with uncertainty in inflow, market price and domestic load.
-
16h20 - 16h45
Modèle avec contraintes probabilistes et une méthode de branch-and-cut : le problème d’horaire de salles d’audience.
Le problème d’horaire de salles d’audience affecte des causes d’une durée incertaine à des salles de différents types en minimisant les délais judiciaires. Le modèle tient compte de l’incertitude avec des contraintes probabilistes non-linéaires associées à chaque type de salle et chaque jour. La méthode proposée est une énumération implicite générant des coupes linéaires lors du viol des contraintes probabilistes.
-
16h45 - 17h10
Stochastic Online Bipartite Resource Allocation Problems
We are interested in an online resource allocation problem (online auction) whereby buyers with
a limited budget want to purchase items consuming a limited quantity of resources. The Google
Adwords problem is the most famous example. There are two ways of dealing the uncertainties of
this problem. On one side, a performance guarantee of the worst case is sought ; the primal-dual
algorithm obtains a good bound in this case. On the other side, algorithms are studied under a chosen distribution of the information : stochastic optimization is good way to handle those uncertainties. Instead of these general approaches, we propose an innovative hybrid method that uses strengths of the two previous : under a small assumption, we propose a stochastic primal dual algorithm. We further test this procedure on sets of data whom have been randomly generated.