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Extended Abstract

Electric vehicles (EVs), with zero runtime emissions and higher energy efficiency than gasoline vehicles,
are increasingly adopted to reduce carbon emissions. Advances in battery technology, rising demand,
emission goals, and regulations have prioritized electrification for the automotive industry (Zhao et al.
2024). Despite advancements, the unavailability of charging infrastructure remains a critical deterrent
to EV adoption (Bailey et al. 2024). In urban settings, charging is linked to Individuals’ daily activities
governing charging start times and durations (Liu et al. 2022). However, very few literature applied
activity-based charging logic in EV infrastructure planning.

Zhang et al. (2020) used an activity-based traffic model with K-means clustering to identify charger
locations for a ridesharing fleet but focused only on spatial distances, neglecting queuing times,
connection durations, and energy served. Csiszar et al. (2019) optimized charger placement using
land-use data to identify activity hotspots but ignored temporal demand variations and activity
durations. None explicitly address activity-governed charging and existing charging infrastructures.

For the location choice model, existing literature has broadly approached the problem using two primary
design principles: demand-based charger allocation and flow-capturing charger allocation. Demand-based
methods focus on satisfying the estimated charging demand from simulations or data-driven models
(Zhang et al. 2020). On the other hand, flow-capturing methods prioritize strategically locating chargers
to maximize accessibility and coverage (Csiszér et al. 2019). As both approaches address key aspects of
EV users’ behavior and charging dynamics, in this study, we combine these approaches into a multi-step
framework.

Given the above literature landscape, this paper proposes a two-step, activity-driven, sequential charger
allocation framework in the urban context, combining both demand-satisfying and flow-capturing
approaches for the EV charger location choice problem.

1 Problem statement

This study aims to reduce charging queues within budgetary and power constraints. ¢ € I is defined
as candidate spots and j € J as current charger locations, with @; and V; representing average queue
and power draw per plug at i. Decision variables z; and p; denote charger type and plug count at 1,
while x; and p; represent the same for existing chargers j. Setup and operation costs are Cs ,, and C, 4,
bounded by budgets B and B,. Zones are denoted by z and I, and J, are sets of candidate and current
charger locations in z. With that, the problem can be formulated as follows. We use Micro Agent Traffic
Simulation, i.e., MATSim for simulating electric vehicle charging in the proposed urban context.
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2 Methodological Framework
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Figure 1: Schematics of the proposed charger location
estimation algorithm.

2.1 Step 1: Modified K-Means Algorithm

The modified K-mean algorithm reduces the solution space by identifying candidate charger locations
(hotspots). The algorithm processes two types of clusters: dynamic (candidate locations) and static
(preexisting chargers). Only the dynamic centroids are updated snapping to the nearest activity facility
location during training. Feature vectors include location coordinates, user counts, and optionally activity
durations, favoring high-activity areas. The number of candidate locations and hence the dimensions of
the step 2 problem are configured in this step.

2.2 Step 2: Metamodel development and optimization

step 2 solves the optimization problem presented in equation 1 except the queue and power draw for
chargers at locations ¢ € I and j € J are approximated using a problem-specific Demand Allocation
metamodel. This metamodel simplifies problem dynamics while preserving MATSim’s behavioral
parameters for consistency.

2.3 Demand Allocation Metamodel Formulation

For each location in a given solution [X, P], the metamodel approximates three outcomes for charger
demand allocation: demand per charger (g;,q;), average intended charging duration (to;,%o ), and
average charging time ¢;,¢;. The intended duration to; reflects users’ desired charging time, while the
actual duration ¢; includes delays, analogous to free flow vs. actual travel time in static traffic models.
These terms are interdependent: demand (q) affects queue time (¢), which influences charger choice
probabilities, in turn shaping intended durations (tp) and peak hour demands. This cyclic dependency
creates a Wardrops equilibrium.

For facility f, this choice set is defined by Iy : d; y < dpas. Then, the probability of choosing charger
i from facility f, wg,; is calculated using the logit model and can be written as follows. Here the utility
includes queue time (¢; —t; ), distance dy;, charging cost ¢; if any, and the obtained charge to battery
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Queuing effects are captured while calculating ¢; from %y ; using the volume delay function as below.
Here, o and ~ controls the smoothness of the curve. In our experiments, « = 0.15 and v = 1.
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After calculating the utility and charger choice probability, we can get hourly demand for a charger from
surrounding facilities using equation 4. Here, facility demand is multiplied by the facility to charger
probability and p, the peak hour factor taken as 0.12. Weighted average durations from these facilities
according to their hourly demand give the hourly intended charging duration as shown in equation 4.
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Finally, the maximum of these hourly demands (g; ) is chosen as the design charger demand ¢; and the
corresponding average intended charging duration is chosen as the intended charging duration for that
charger and for that demand. The process is expressed in mathematical form as shown in equation 5.
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The cyclic dependencies among the system of equations 2-5 create a stochastic user equilibrium. We solve
this system of equations using the accelerated method of successive average (AMSA) proposed by Liu
et al. (2009). Once the equilibrium is solved, the hourly energy draw per zone (V, ;) can be calculated by
summing up the hourly charger power draws V; j, for chargers in that zone. The maximum value among
the hourly power draw is the maximum energy draw per zone V,. This value will be used to calculate
the zonal power constraints. The process is explained mathematically in equation 6.
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2.4 Metamodel Optimization

We used OPT4J a library in JAVA specialized for meta heuristics optimization for solving our problem.
The evolutionary algorithm in OPT4J supports nonlinear large-dimension problems, however, with an
11s runtime of the metamodel, we had to keep the maximum budget of 10,000 evaluations. GA does
not support constrained optimization directly. Hence, the nonlinear i.e., the zonal power constraint was
moved to the objective as penalties for violating constraints.

3 Experimental Setup and Results

3.1 Scenario Description

The experimental setup uses a 10% Montreal scenario (Bakhtiari et al. 2024) with 297,128 individuals,
25% of them EV owners, 1,392 existing public chargers, and no home chargers, creating a high-demand
context to rigorously test the framework. Charger setup costs are $5k, $10k, and $20k per plug for Level
1, 2, and Fast chargers, with operation costs at $200, $400, and $800 per plug, respectively. Budget and
power draw constraints were set to 60% more than the current scenario. Step 1 evaluated 2,500 potential
hotspots, including 1,392 fixed charger locations, resulting in 2,216 decision variables.

3.2 Optimization Results

Multiple random assignments of plugs and charger types were tested across 25 scenarios, utilizing the full
budget. The average peak-hour queue for the 25 random scenarios utilizing the full budget dropped to
27.3 hours, establishing a benchmark for the optimization algorithm. Finally, the proposed optimization
framework achieved a 21% improvement over the benchmark, reducing the average peak-hour queue to
21.47 hours after 500 generations of the genetic algorithm. Figure 2a illustrates the optimized solution,
which deployed more plugs than the original scenario while using only 60% of the budget. The algorithm
prioritized plug quantity over higher-power chargers, aligning with the activity-driven charging behavior
model. Figure 2b shows the spatial distribution of optimized chargers, with dot size indicating plug
count.
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Figure 2: Comparison of charger type composition (a) and spatial distribution of optimized chargers(b).

4 Conclusion

This study introduced a two-step, activity-driven, sequential charger allocation framework for optimizing
electric vehicle (EV) charging infrastructure in urban contexts. In Step 1, a modified K-means clustering
algorithm identified candidate charger locations using activity-based features, and in Step 2 minimization
of the charger queues within budget and power constraints was performed by utilizing a problem-specific
metamodel to approximate charger demand allocation, queue, and charging time. The genetic algorithm
achieved a 21% improvement over the random allocation benchmark, reducing the average peak-hour
queue from 27.3 hours to 21.47 hours while adhering to budgetary and zonal power constraints.
The optimized solution prioritized slow Level 1 chargers in low-congestion areas and fast chargers in
high-demand zones, deploying 40% more plugs than the original scenario while utilizing only 60% of
the setup budget. Demand elasticity was observed when simulating the optimal solution necessitating
further development in the metamodel in future research.
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