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Introduction

In the last twenty years, agent-based models (ABMs) have emerged as a method to replicate the complexity
in social systems and have been applied to a diverse range of applications in transportation systems Bas-
tarianto et al. (2023). The ABMs quality depends on that of the synthetic travel demand, which includes
a synthetic population of households and persons with sociodemographic attributes and their daily activity
patterns in time and space Hörl & Balac (2021).

Synthetic populations are artificial populations generated based on observed populations that aim to share
statistical properties similar to those of the observed populations Garrido et al. (2020). Population synthesis,
the process of generating a synthetic population, has been performed using both deterministic algorithms,
such as Iterative Proportional Fitting (IPF) and Direct Sampling (DS), and probabilistic algorithms, in-
cluding Monte Carlo Markov Chain (MCMC) and Bayesian Networks (BN) (Barthelemy & Cornelis, 2012;
Farooq et al., 2013; Sun & Erath, 2015).

Although several strictly statistical metrics have been used to assess the performance of population synthesis
algorithms, frameworks that compare those algorithms in terms of the synthetic population quality are rare
in the existing literature. To our knowledge, Bigi et al. (2024) worked on that gap in the literature.

Following this work, this paper proposes a framework for benchmarking population synthesis algorithms,
with a particular focus on how they behave when missing observations in the training data are present.

Methodology

Problem statement

Census data published by the statistical bureaus contain combinations of demographic and socioeconomic
attributes values of a share of the population. We call structural zeros the attribute combinations that do not
exist in reality and sampling zeros those that are not observed in the census data due to limited knowledge
of the underlying population.

Since probabilistic population synthesis algorithms have the ability to generate attribute combinations that
are either structural zeros or sampling zeros, we aim to quantify the tendency of a population synthesis
algorithm to generate attribute combinations that are either sampling or structural zeros.

The approach

It is difficult to discern whether missing attribute combinations are structural or due to the small sample
size, usually ranging from 1% to 10% of the population depending on the country Sun & Erath (2015). In
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France, however, the national statistical bureau (INSEE1) publishes a large, weighted census data set that is
representative for about 30% of the national population. Since, the INSEE data are more detailed and richer
than most data sets used in the literature, we can assume that sufficiently few sampling zeros exist in the data.

Given the detailed data set, we choose to replicate the classic workflow of population synthesis from the
provision of (potentially sparse) census data to the generation of a synthetic population. In that scope, we
consider the INSEE data as ground truth (GT) and generate differently sized samples (S) based on that
ground truth. We then generate synthetic populations (SP) based on those samples. That way, we can
see how the sample size affects the quality of the synthetic population.

Let us call the missing combinations of attribute values in GT ground truth zeros. Assessing whether a
population synthesis algorithm has a tendency to generate attribute combinations that are sampling zeros
or structural zeros then translates into studying whether an algorithm has a tendency to generate attribute
combinations that are ground truth zeros or sampling zeros that have been generated by our process.

Our approach consists of three stages. First, we generate N weighted samples based on GT and the persons’
weights using the Truncate-Replicate-Sample (TRS) method with N random seeds Lovelace & Ballas (2013).
TRS generates persons from a count value by copying every observation as many times as the integer
component of the person’s weight. Another person is generated stochastically based on the fractional part
of the weight. Second, we generate for each GT sample M other samples using M sampling rates. Third,
we generate T synthetic populations using the M samples as training data. Thus, N ×M × T data sets are
generated at the end of the process allowing us to understand stochasticity effects in the population synthesis
process.

The zeros analysis framework

The sampling and population synthesis stages generate a new kind of zeros while inheriting the zeros from
the previous stage. While the synthetic population inherits the ground truth zeros and the sampling zeros
from the second stage, some of them may be filled by synthetic persons. Looking at the trajectories of the
zeros over the three stages leads us to define the framework made of the following aggregated cases:

• Reproduction: An attribute combination is either present or missing in the ground truth and still
present or missing in the synthetic population, respectively.

• Removal: An initially existing attribute combination no longer exists in the synthetic population.

• Recovery: An initially existing attribute combination is removed during the sampling but again
present in the synthetic population.

• Hallucination: An initially not existing attribute combination appears in the synthetic population.

Following this trajectory analysis, we draw three metrics that help us strengthen our comparative analysis.
Those metrics are based on the attribute combinations and not their number of observations. We will
focus on the observations in future work. The metrics names are : hallucination rate, removal rate,
recovery rate. The recovery and hallucination rates represent the tendency of a population synthesis
algorithm to generate (wanted) observations for sampling zeros and (unwanted) observations for structural
zeros, respectively. While we would expect the hallucination and removal rates to be closer to 0%, we would
also assume the recovery rate to be closer to 100% for a high quality algorithm.

Results

We present the results of our methodology applied to census data of people living in the region Ile-de-France
in 2019 collected by INSEE. For our test, we have selected the following list of attributes described as fol-
lows: the category of age (13 modalities), the occupation category (8 modalities), the higher education (2
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modalities), the gender (2 modalities), the structure of the household (17 modalities) and the number of cars
in the household (4 modalities). In future work, we will examine the most frequently used attributes in the
literature.

For benchmarking purposes, we choose four population synthesis algorithms: Direct Sampling (DS),
Iterative Proportional Fitting (IPF), Markov-Chain Monte-Carlo (MCMC) and Bayesian network
(BN). For robustness purposes, we set the values of N and M to 100 and 4.
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Figure 1: Population synthesis trajectory analysis metrics

In figure 1, we see that, the removal rate decreases as the training data get larger for all algorithms except
MCMC for which it increases. This rate never goes above 8%. Also, the larger the training data the lower
the recovery and hallucination rates, except for IPF and DS where those rates are equal to zero. There
is gap of almost 70 percentage points between the two configurations for BN and MCMC for the metrics
related to hallucination and recovery trajectories. While the recovery rates for BN (from 72% to 68%) and
MCMC (from 97% to 89%) are high, the hallucination rates are lower for BN (7%) than for MCMC (from
83% to 77%). This means, both BN and MCMC have the tendency to generate attribute combinations that
are sampling zeros (generated by our process) while MCMC has also the tendency to generate attribute
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combinations that are ground truth zeros.

Conclusions

We introduce a framework to analyze population synthesis trajectories. While our goal is to benchmark
population synthesis algorithms and see how they react in the context of missing observations in training
data, we also provide three metrics derived from the trajectory analysis to evaluate the tendency of these
algorithms to generate attribute combinations that are either sampling zeros or structural zeros.
The results of our use case suggest both BN and MCMC have a tendency to generate attribute combinations
that are sampling zeros while MCMC tends to generate attribute combinations that are structural zeros in
almost the same proportion as the sampling zeros. We have further the comparative analysis by tuning the
algorithms parameters to see how the changes affect our metrics. While the changes had little impact for
BN, they had considerably changed the shapes of the trajectories for MCMC. Therefore, our framework is
designed to be used not only as an assessment tool but also as a calibration tool for population synthesis
algorithms.
Future research will include more algorithms such as Generative Adversarial Network and Variational Auto-
Encoder as they gained attention for their performances in recent literature Garrido et al. (2020). Further,
given that they handle large data sets, we will expand the scope of the attributes and include all the 12
millions people living in the Ile-de-France region and look at the population at the household level.
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