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Abstract 

Strategic Long-Range Transportation Planning (SLRTP) is pivotal in shaping prosperous, sustainable, and resilient 

urban futures. Existing SLRTP decision support tools predominantly serve forecasting and evaluative functions, 

leaving a gap in directly recommending optimal planning decisions. To bridge this gap, we propose an Interpretable 

State-Space Model (ISSM) that considers the dynamic interactions between transportation infrastructure and the 

broader urban system. The ISSM directly facilitates the development of optimal controllers and reinforcement 

learning (RL) agents for optimizing infrastructure investments and urban policies while still allowing human-user 

comprehension. We carefully examine the mathematical properties of our ISSM; specifically, we present the 

conditions under which our proposed ISSM is Markovian and a unique and stable solution exists. Then, we apply 

an ISSM instance to a case study of the San Diego region of California, where a partially observable ISSM 

represents the urban environment. We also propose and train a Deep RL agent using the ISSM instance representing 

San Diego. The results show that the proposed ISSM approach, along with the well-trained RL agent, captures the 

impacts of coordinating the timing of infrastructure investments, environmental impact fees for new land 

development, and congestion pricing fees. The results also show that the proposed approach facilitates the 

development of prescriptive capabilities in SLRTP to foster economic growth and limit induced vehicle travel. We 

view the proposed ISSM approach as a substantial contribution that supports the use of artificial intelligence in 

urban planning, a domain where planning agencies need rigorous, transparent, and explainable models to justify 

their actions.  

Introduction 

Many countries require planning authorities to compose comprehensive long-range transportation plans to 

receive approval or government funding for infrastructure projects and urban policies. Strategic transportation plans 

often have a 30- to 40-year planning horizon, and regions may update them every few years (with or without minor 

amendments between formal updates). Common visions and goals in regional transportation plans include 

improving sustainability, equity, accessibility, and resilience (Sciara and Handy, 2017).  

Figure 1 displays a simplified interrelationship between a planning agency and the urban systems that the 

planning agency impacts but does not control. This interaction can be seen as a control feedback loop, where the 

metropolitan area represents the system, and the planning agency acts as the controller, striving to guide the system 

towards a desirable state or to optimize some performance measure(s). 

This paper concentrates on the Strategic Long-Range Transportation Planning (SLRTP) phase, also known as 

sketch planning. This initial phase involves evaluating SLRTP decisions, such as funding allocations among modes 

and overall congestion management policies, laying the groundwork for more detailed regional transportation 

system planning in later phases. However, this process is susceptible to the mental models, conventions, and recent 

events that influence planners, analysts, researchers, and policymakers, leading to potential implicit cognitive biases 

and non-transparent decision-making.  
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Figure 1: Simplified conceptualization of the interaction between a planning agency and the urban systems within the 

planning agency’s domain.  

Interpretable State-Space Representation of Urban Dynamics 

Conceptual Framework 

This subsection formulates the SLRTP as an interpretable state-space model (ISSM), where interpretable refers 

to the model's capacity to present its processes and outcomes transparently and understandably for human planners 

and decision-makers. Specifically, every state or action variable has a concrete and direct real-world mapping. For 

example, a state variable can be the total number of households or total lane miles of highways, both of which have 

immediate real-world counterparts and do not necessitate additional data mining or complex analytical 

interpretation for understanding. This approach ensures that the ISSM remains grounded in practical urban realities, 

facilitating more informed and effective SLRTP decisions and minimizing the model users’ potential perception 

that the model is a black box.  

Error! Reference source not found. illustrates a conceptualization of the SLRTP by adding additional details 

to Figure 1. The red arrow from the planning agency component represents the actions imposed on the urban system. 

This red arrow is further split into multiple sub-actions within the urban system component, such as infrastructure 

maintenance and pricing strategies. The dark arrows (within the urban system component) represent causal effects—

their delays might vary from a few minutes (from travel patterns to accessibility) to a few years (from populations 

to housing prices). The blue arrow pointing from the urban system component to the planning agency component 

represents the information feedback from the urban system (e.g., system performance and public comments). More 

specifically, in Error! Reference source not found., a decision-maker (planning agency) observes the system state 

at 𝑡 (i.e., 𝒔̂𝑡) and the reward 𝑟𝑡 (from a prior action 𝒂𝑡−𝜏) and then the agent decides on an action 𝒂𝑡 (illustrated in 

red texts and arrows). The urban system (environment) evolves from 𝒔𝑡  to 𝒔𝑡+𝜏 , with the influence of 𝒂𝑡  and, 

possibly, other stochastic factors. The decision-maker then observes the new system state 𝒔̂𝑡+𝜏 and the latest reward 

𝑟𝑡+𝜏 and decides on the next action 𝒂𝑡+𝜏. We consider “no action” a possible action. The urban system then evolves 

from 𝒔𝑡+𝜏  to 𝒔𝑡+2𝜏 . This process continues until the horizon year. Similarly, we have 𝒂𝑡 = 𝒂𝑡0+(ℎ−1)𝜏, ∀𝑡 ∈

[𝑡0 + (ℎ − 1)𝜏, 𝑡0 + ℎ𝜏), where 𝑡0 is the base year, ℎ ∈ {1,2, … , 𝐻} is the index of decision epochs, and 𝑡𝑇 = 𝑡0 +
(𝐻 − 1)𝜏. 𝐻 is the total number of planning intervals from 𝑡0 to 𝑡𝑇. 𝑡𝑇 is the planning horizon year. 𝜏 is the duration 

of each planning interval, say, four years.  

We specify the urban system state with five main components:  

• Transportation infrastructure and equipment (e.g., roadways, railways, buses, rail cars, shared bikes, 

transit stations) 

• Socioeconomic conditions (e.g., households, employment, auto ownership) 
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• Real estate (e.g., housing units, business buildings, manufacturing facilities, warehouses) 

• Natural environment (e.g., natural habits, terrains, soil conditions, hydrological conditions) 

• Other factors such as politics, disruptive technologies, and new regulations (e.g., Americans with 

Disabilities Act (ADA)) that might influence people’s (and businesses’) accessibility to employers 

(labor) and propensity for real estate (development) 

Note that the model we propose in this section is an urban systems model, not the model for the entire feedback 

system composed of the urban systems and the planning agency. Therefore, the action variables are exogenous to 

the proposed ISSM. 

We define the following transition function to capture the dynamics of the system state variables: 

𝒔̇𝑡 ≡
𝑑𝒔𝑡

𝑑𝑡
= 𝑀(𝒔𝑡 , 𝒂𝑡; 𝜶𝑡 , 𝜷𝑡 , 𝝈𝑡) (0-1) 

where 𝒔 ∈ 𝒮 ⊂ ℝ𝐼 captures the vector of a system state, 𝒂 ∈ 𝒜 ⊂ ℝ𝐽 represents the vector of decisions in the action 

space 𝒜. 𝜶𝑡 and 𝜷𝑡 are elasticity and base rate model parameter vectors, respectively. Each element of 𝜶 can be 

any positive real value (i.e., 𝛼𝑡 ∈ ℝ,), while each element of 𝜷 can only be positive real value (i.e., 𝛽𝑡 ∈ ℝ+, ∀𝑡). 

When we specify 𝜶𝑡 and 𝜷𝑡 as constant parameter vectors, we can simplify the notation by dropping the subscript 

𝑡 (i.e., 𝜶, 𝜷). 𝝈𝒕 ∈ ℝ is the parameter capturing the transition noise. Although we can capture noise as a stochastic 

process by assuming that 𝝈 follows, say, a Wiener process, in this paper, we model 𝝈𝑡 as a time-dependent function 

of 𝑡  so that we can study the impact of the noise by varying this function during simulations. The mapping 
𝑀: 𝒮 × 𝒜 → ℝ𝐼 captures the dynamics of the urban environment and governs how the state of the corresponding 

SLRTP model evolves from 𝑡 to 𝑡 + 𝑑𝑡 with or without stochasticity. 𝑡 ∈ [𝑡0, 𝑡𝑇), or simply 𝑡 ∈ [0, 𝑇), is the time 

during a modeling period with a horizon at 𝑇, which we use to capture exogenous changes that influence urban 

dynamics. Note that one can treat time as a state variable with perfectly predictable dynamics. For example, we 

know that one year after 2023 is 2024. So, the MDP assumption is less restrictive than it first appears, as one can 

always incorporate historical information in the present state so that the evolution of the system from 𝒔𝑡 to 𝒔𝑡+𝑑𝑡 is 

only a function of 𝒔𝑡 and 𝒂𝑡, with independent stochasticity. However, it is still often useful to explicitly consider 

𝑡. We further specify 𝑀(𝒔𝑡 , 𝒂𝑡) as 𝑀+(𝒔𝑡, 𝒂𝑡) − 𝑀−(𝒔𝑡, 𝒂𝑡), where 𝑀+(𝒔𝑡, 𝒂𝑡) ≥ 0 represents the rate associated 

only with factors that increase the value of 𝒔𝑡, while 𝑀−(𝒔𝑡, 𝒂𝑡) ≥ 0 represents the rate associated only with factors 

that decrease the value of 𝒔𝑡.  

We start with the modeling of 𝑀𝑖
−, ∀𝑖 ∈ 𝕀 , where the critical component is the duration (delays) of the 

quantities in a state 𝑖. Let 𝐷𝑡
𝑖(𝒔𝑡 , 𝒂𝑡, 𝑡), ∀𝑖 ∈ {0,1, … , 𝐼} represent the delay at 𝑡 for the state variable 𝑖. In time-

invariant cases, we simply write 𝐷𝑡
𝑖(𝒔𝑡, 𝒂𝑡). We propose the following multiplicative form: 

𝐷𝑡
𝑖(𝒔𝑡 , 𝒂𝑡 , 𝑡; 𝛼𝑡

𝑖,−, 𝛽𝑡
𝑖,−) = 𝛽𝑖 ∙ ∏ (𝑠̃𝑡

𝑖)
𝛼𝑡

𝑖,−

𝑖
∏ (𝑎̃𝑡

𝑗
)

𝛼𝑡
𝑗,−

𝑗
 (0-2) 

where 𝑠̃𝑡
𝑖 and 𝑎̃𝑡

𝑗
 are the scaled values of 𝑠𝑡

𝑖 and 𝑎𝑡
𝑗
 by 𝑠̆𝑡

𝑖 and 𝑎̆𝑡
𝑗
. 𝛽𝑖, 𝒔̆𝑡

𝑖 , 𝒂̆𝑡 are the corresponding benchmark values 

and vectors, which are typically the base year values or some conventional values planning agencies use. This way, 

for any 𝑠𝑡
𝑖, we can formulate 𝑀− to determine the rate of decrease for the state variable 𝑖 as follows: 

𝑀𝑖
−(𝒔𝑡, 𝒂𝑡 , 𝑡) =

𝑠𝑖

𝐷𝑖(𝒔𝑡 , 𝒂𝑡 , 𝑡)
, ∀𝑖 ∈ 𝕀 (0-3) 

Note that 𝐷𝑖 ∈ ℝ+ and 0∉ ℝ+. As we will show in Section Error! Reference source not found., this approach 

preserves the desirable Markovian property of the dynamics of the state transitions.  

The growth rate for the state variable 𝑖, 𝑀𝑖
+, is generally formulated as: 

𝑀𝑖
+(𝒔𝑡 , 𝒂𝑡, 𝑡) = 𝛽𝑡

𝑖,+ ∏ (𝑠𝑡
𝑖)

𝛼𝑡
𝑖,+

𝑖
∏ (𝑎𝑡

𝑗
)

𝛼𝑡
𝑗

𝑗
, ∀𝑖 ∈ 𝕀 (0-4) 



We define the reward of a given state as 𝑟𝑡 , which measures the performance of a given state 𝒔𝑡  without 

considering any return in the past or the future. We define 𝑟: 𝒮 ↦ ℝ , and 𝑟 and 𝑟̂ are equivalent. We adopt a linear 

additive form for the mapping, as shown in Eqn. (0-5), to condense multiple performance metrics into a single 

composite quantity.  

𝑟(𝒔𝑡) = 𝑐 + ∑ 𝑤𝑘
𝑘∈𝜓

∙ 𝑔𝑘(𝒔𝑡) (0-5) 

where 𝑤𝑘 ∈ [0,1], 𝑡 ∈ [𝑡0, 𝑡𝑇],  𝑔𝑘(𝒔𝑡) = (𝑥̃𝑡
𝑘)

𝜃𝑘
, 𝜃𝑘 ∈ ℝ, and 𝑥̃𝑡

𝑘 is the scaled auxiliary variable associated with 

performance measure 𝑘 ∈ 𝜓. We might simplify 𝑟(𝒔𝑡) as 𝑟𝑡  when no confusion arises. Modelers and decision 

makers can utilize 𝜃𝑘 to capture the nonlinear effect of performance measure 𝑘 in terms of its contribution to the 

composite function. If we want 
𝜕𝑔𝑘

𝜕𝜃𝑘
> 0, then we set 𝜃𝑘 > 0. If we further want 

𝜕2𝑔𝑘

𝜕𝜃𝑘
2 

≤ 0, then we set 𝜃𝑘 ∈ (0,1), 

otherwise we set 𝜃𝑘 > 1. A similar principle applies to the case where 
𝜕𝑔𝑘

𝜕𝜃𝑘
< 0. Thanks to these desirable properties 

and the linear additive property of 𝑟(∙), we know that 𝑟(𝒔𝑡
′ ) > 𝑟(𝒔𝑡), if and only if 𝒔𝑡

′ ≻ 𝒔𝑡.  

We can then obtain the cumulative rewards 𝑅𝑡 (with discount factor 𝛾 ∈ [0,1]) from 𝑡 to the planning horizon 

of an episode, as shown in Eqn. (0-6).  

𝑅𝑡 = ∑ 𝛾ℎ−1 ∙ 𝑟𝑡+ℎ∙𝜏

𝐻

ℎ=1
 (0-6) 

Note that the immediate reward at 𝑡 is counted from 𝑡 + 𝜏, not from 𝑡, as any decisions made at 𝑡 will not have 

any impact until 𝑡 + 𝑑𝑡 (or 𝑡 + Δ𝑡 in a simulation, where Δ𝑡 is the time step used for simulation). Furthermore, 

using a constant positive 𝛾 does not alter the preference rank in 𝒮 (or 𝒮̂) because when 𝛾 = 1, we know that 𝒔𝑡
′ ≻

𝒔𝑡 (since 𝑟(𝒔𝑡
′ ) > 𝑟(𝒔𝑡)). Applying a positive 𝛾 other than 1 does not alter the preferential relationship.  

Case Study with Reinforcement Learning  

 


