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1 Motivation and Related Work

Understanding and modeling bicycle count data over space and time is essential for improving urban mo-
bility, optimizing transportation systems, and supporting sustainable transportation initiatives. As cities
increasingly adopt bicycle-sharing programs, robust and flexible models are needed for effective infrastruc-
ture planning, resource allocation, and enhancing the biking experience. However, bicycle count data pose
several challenges. These data are inherently count-based and typically follow non-Gaussian distributions,
such as Poisson or Negative Binomial, which often exhibit overdispersion, complicating traditional statistical
methods. Moreover, strong non-stationarity exists, with temporal fluctuations driven by seasonal trends
and weekly patterns [e.g., weekdays vs. weekends; 18], as well as spatial variations influenced by differences
in urban environments. Additionally, spatiotemporal dependencies arise as bicycle usage at one location
influences nearby locations over time. Another key issue is missing data, which may result from sensor mal-
functions or incomplete observations, significantly affecting prediction accuracy. The high dimensionality of
bicycle count data, due to the large number of locations where counts are recorded and time intervals, further
require scalable and computationally efficient modeling approaches. Incorporating external covariates, such
as weather conditions, special events, and infrastructure changes, can enhance predictive performance but
introduces additional complexity.

Most existing approaches to modeling bicycle count data rely primarily on available covariates without
explicitly accounting for spatiotemporal dependencies. Methods such as generalized linear models (GLMs)
[6] offer interpretability but struggle to capture complex nonlinear relationships between predictors and bi-
cycle counts. More recently, machine learning (ML) and deep learning (DL) algorithms have been employed
for transportation data modeling, particularly in bicycle volume prediction [5, 8]. While ML and DL models
effectively capture intricate nonlinearities, their lack of interpretability makes them challenging to use in
transportation planning and decision-making. Additionally, there are no straightforward methods for quan-
tifying uncertainty in ML and DL models, which often rely on bootstrapping and ensemble techniques for
uncertainty estimation.

A third category of models, statistically-driven spatiotemporal models [1], offers a middle ground, balanc-
ing interpretability with flexibility. These models introduce explicit spatiotemporal dependence structures
using random effects, making them particularly well-suited for transportation data applications where both
interpretability and spatiotemporal prediction are essential. However, such models remain relatively under-
explored for bicycle demand modeling compared to regression-based statistical techniques and ML/DL.

Among these spatiotemporal models, significant work has been done on time-varying parameter models,
akin to state-space models, to capture complex temporal dependencies [16, 9, 10]. While these have been
applied in other transportation contexts, their direct adaptation for bicycle count data remains an open
area of research. Dynamic linear models (DLMs) [17] are a well-established class of state-space models
capable of modeling non-stationary temporal trends, seasonality, and exogenous covariate effects in a unified
setting. [13] recently extended such models by proposing dynamic generalized linear models (DGLMs) for
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site-specific human mobility counts forecasting. Their approach applies DGLMs separately to each site for
future predictions without explicitly incorporating spatial dependencies between sites. These models can
be further extended by incorporating spatial random effects [4] for explicit spatiotemporal modeling using
the intrinsic autoregressive prior. Although this method has been applied to traffic crash frequency data, it
could also be adapted for bicycle data. However, most existing approaches do not provide a fully general and
computationally efficient framework or tools, such as R packages, for spatiotemporal inference and prediction
in bicycle count data, highlighting an exciting research opportunity in this area.

2 Our Contributions

Building upon existing spatiotemporal modeling frameworks, we propose a novel computationally efficient
and scalable spatiotemporal modeling approach that integrates dynamic generalized linear models (DGLMs)
[17] with classical spatiotemporal statistical models [1]. Motivated by the pattern and properties of the data,
our model includes the following components:

• Spatiotemporally varying intercepts to capture overall spatiotemporal trends,

• Temporally varying coefficients for purely temporal (spatially constant) covariates, allowing dynamic
temporal effects on bicycle counts,

• Temporally varying coefficients for seasonal harmonics to account for periodic behaviors, such as weekly
seasonality, and

• Fixed coefficients for selected exogenous covariates.

These components are combined additively in the linear predictor, which is linked to the log-mean of the
Poisson distribution. Given this linear predictor, bicycle count data is assumed to follow an independent
Poisson distribution. To capture spatial dependence, we include latent Gaussian processes with a Matérn
correlation function. These spatial effects evolve smoothly with time through a random walk model. As
the spatial correlations defined by the Matérn function involve floating operations of O(n3), we employ an
approximation technique that connects the Matérn field to Gaussian Markov random fields (GMRFs) [14]
through the Stochastic Partial Differential Equation (SPDE) approach [11], ensuring computational efficiency
and scalability for higher spatial dimensions.

Our model naturally performs missing value imputation, spatial interpolation at unobserved locations,
forecasting, and spatiotemporal prediction. Additionally, it allows for interpretation and inference of the
model components, offering predictive performance comparable to complex ML/DL models while remaining
interpretable. We adopt a Bayesian inference approach for our model, making uncertainty quantification
straightforward. In addition, our model provides the estimation of average annual daily bicyclists (AADB)
[12] which is a widely used metric in cycling studies providing a measure of cycling activity over time. For
the long-term monitoring sites where sensors are installed for longer time, AADB maybe estimated directly.
However for short-term sites where data are collected for only a few days or months, AADB estimation
requires interpolation and missing value imputations. Traditional interpolation methods rely on long-term
site data, which introduce errors due to their inability to capture dynamic trends and seasonality [2]. In
contrast, our Bayesian hierarchical model explicitly incorporates these spatiotemporal patterns, significantly
improving the accuracy and uncertainty quantification of AADB estimates.

While inference when the response variable follows a Gaussian distributio is straightforward using conju-
gacy, Bayesian inference for Poisson response is challenging due to the lack of closed-form full conditionals.
To address this, we develop an efficient Markov chain Monte Carlo (MCMC) sampler that leverages gra-
dient and observed Hessian information, using the preconditioned Metropolis-adjusted Langevin algorithm
(pMALA) [7] to efficiently sample from complex posterior distributions. Furthermore, our MCMC sampler
supports various GLM families and we implement our modeling framework in the R package sparseDGLM,
making it applicable to a broad range of transportation datasets.
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Figure 1: Estimated AADB (top left), standard errors (top right), lower (bottom left), and upper (bottom
right) 95% credible intervals for the AADB estimates for both long-term and short-term sites based on the
best fitted model.

3 Results

We conduct a detailed synthetic data experiments to evaluate the performance and scalability of our MCMC
sampler and to assess the accuracy of the sparse SPDE-based approach. Specifically, we compare the effec-
tiveness in spatial interpolation, forecasting, and spatiotemporal prediction. The synthetic data experiments
demonstrate the efficiency and scalability of our inference approach as well as the sparse SPDE approximation
of continuous Matérn random field, thus allowing us to fit our model in higher spatial dimensions.

We also apply our model to a set of Montreal’s daily bicyclist data which includes 53 long-term monitoring
sites and 93 short-term sites where data availability is extremely limited, often spanning only two to three
days. We compare the predictive performance of our proposed model against simple Bayesian GLMs with
Poisson response, BKTR [9], a complex Bayesian spatiotemporal model, and BayesNF [15], a deep learning-
based framework that combines Gaussian processes and neural networks. Our model achieves comparable
predictive performance with strong computational efficiency while maintaining interpretability across all
model components, making it well-suited for real-world transportation applications.

The set of 93 short-time sites with more than 99% missing values are treated as completely unobserved
and we perform spatial interpolation using the best fitted model. AADB is estimated for both long-term and
short-term sites, along with 95% credible intervals for each site based on posterior samples, obtained using
our MCMC sampler. Figure 1 showcase the estimated AADB along with their standard errors and credible
intervals for both long-term and short-term sites. The results align with empirical expectations, showing
higher bicycle demand near Mont-Royal park and major universities, likely due to a high concentration
of students and recreational users in these areas. In contrast, sites on the outskirts of Montreal exhibit
significantly lower bicycle counts. This pattern is also evident at short-term monitoring sites, where bicycle
use is intuitively lower, showcasing the consistency of our model with observed trends.

In summary, our proposed model bridges the gap between the interpretability of traditional statistical
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models and the ability to capture non-stationarities, similar to deep learning approaches, while offering
flexibility in modeling bicycle count data. Our model can also be applied to other transportation datasets
that exhibit similar patterns to bicycle count data, allowing users to directly benefit from our developed R

package, spasreDGLM. Finally, several future research avenues exist in order to extend the proposed model.
A natural direction is the incorporation of the road network structure [3], which could further enhance
prediction accuracy and provide deeper insights into urban cycling behavior.
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