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Introduction 

Driven by the need to reduce greenhouse gas emissions, alleviate traffic congestion, 

and promote environmental sustainability, the development of low-carbon, green and 

sustainable transportation system has become a core focus of urban planning and 

development. While significant progress has been made in sustainable transportation 

through the implementation of policies such as Transit-Oriented Development (TOD), 

several challenges remain. At the same time, with the emergence of new travel modes, 

such as carpooling, shared vehicles, autonomous taxis, and flying cars, there is a growing 

diversity in travel choices available to different groups, resulting in more complex travel 

chains for residents. Therefore, understanding the usage of different transportation modes 

within a region, characterizing the regional travel structure, and analyzing the 

mechanisms underlying changes in regional travel patterns are essential for formulating 

targeted policies and interventions. These efforts are crucial for increasing the proportion 

of green and low-carbon travel and promoting sustainable travel behaviors. 

Although a substantial body of research has been conducted on green guidance 

strategies for residents and their spatial heterogeneity, several issues remain unresolved, 

Firstly, during the community space planning and transportation system optimization 

phases, urban planners and managers often focus on the macro-level travel structure 

proportions of the city, neglecting the heterogeneity of travel structures in localized areas 

[1]. Secondly, current studies on residents' travel behavior or travel structure are based 

solely on survey data, utilizing discrete choice models or machine learning for analysis, 

without capturing the long-term dynamic evolution of residents' travel behavior [2]. To 

address these issues, this study proposes a regional residents' travel structure evaluation 

model based on multi-semantic learning methods and Large Language Models (LLM). It 

provides quantitative support for the discovery of spatiotemporal patterns in regional 

travel structures, analysis of low-carbon travel structures, and identification of the 

potential for regional low-carbon travel. 

Methodology  

The study constructs a regional travel structure estimation model based on multi-

modal data, employing multi-semantic learning methods and the LLM to forecast 

residents' travel patterns across different spatial contexts and assess regional travel 

structures. The specific process is illustrated in Figure 1. The model primarily involves 

two methods: (1) regional multi-modal data feature extraction based on multi-semantic 

learning, and (2) regional travel structure prediction using the LLM model. 
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Figure1 The Proposed Framework for Estimating the Regional Travel Structure  

Feature extraction of region multi-modal data based on multiple semantic learning  
  In this section, the study utilizes multi-semantic learning methods to integrate 

multi-source multi-modal data. To characterize the spatiotemporal characteristics of 

different regions, Specifically, this study first considers the distinct text and image 

information associated with each region and proposes a method for extracting the 

spatiotemporal features of text and images for each region using a pre-trained encoder-

based model: 
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where T is the category of features in the region and the final mapping of the trained 

model from words to vectors is W; 𝑒𝑖
𝑖𝑚𝑎𝑔𝑒

 the final representation for region’s imagery 

feature. Subsequently, this study employs a feature-level attention fusion module, which 

aligns the combined image features with the text representation vectors for each region. 

This approach injects both visual and textual semantic insights into the fused features: 
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Estimation model for regional travel structure based on LLM model 

Unlike traditional prediction and evaluation models, the LLM model can 

automatically capture complex semantic patterns through vast amounts of pre-trained 

data, overcoming the limitations of traditional models that rely on manual feature 

engineering [3]. Therefore, this study uses LLM to assess regional residents' travel 

outcomes. In this section, we provide the unified mathematical definition of the LLM, 

including its inputs, outputs, and objective function. The specific method is illustrated in 

Figure 2. First, for a given region 𝑖, the input to the LLM model 𝛿𝑖 can be represented by 

the following combination in natural language, based on the design of the prompt: 

𝛿𝑖 = (𝑝, 𝜌𝑖)                                                               (4) 

where  𝑝 represents the prompt; 𝜌𝑖 represents the multi-modal features extracted for the 

region. Given these input tokens, this study employs a widely used LLM with millions of 



parameters to generate regional travel structure metrics and calculations based on its 

understanding of specific task instructions: 

𝜇𝑖 = 𝐿𝐿𝑀(𝛿𝑖)                                                        (5) 

where 𝜇𝑖 represents the target demand label. Finally, this study reformulates the regional 

travel structure metric goal as a conditional language generation task, and optimizes the 

metric goal by minimizing the negative log-likelihood (NLL) of the target labels: 
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where I and K represent the numbers of regions and target tokens, 𝑃𝜃 is the probability 

distribution of tokens based on the model parameters 𝜃. 
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def build_prompt(grid_id, hour):

    prompt = f"""

    {grid_id}，{hour}：

    - Metro：{bus_agg.loc[grid_id, 

hour]['count']}

    - Taxi：{taxi_agg.loc[grid_id, 

hour]['wait_time']}   

    - questionnaire：
"{survey_agg.loc[grid_id]['pain_point']}"

    

   Predict travel structure（metro、bus、

walk、car、bike）
    """

    return prompt
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Figure 2 Regional Travel Structure Estimation Framework Based on LLM Model 

Results  

The study takes Beijing as a case example and utilizes the proposed framework to 

estimate the travel structures of residents in different spatial communities within the city. 

The results characterize the travel structure features of various communities and 

compares the results with traditional predictive models to validate the accuracy of the 

proposed framework. As shown in Table 1, compared with traditional models, the LLM 

demonstrates significant advantages in multi-modal fusion, semantic reasoning, and small 

sample adaptation. 

Table 1 Comparison of predictive performance among various models 

Model RMSE MAE 

ARIMA 6.58 4.33 

LSTM 6.08 4.01 

GCN 5.83 3.46 

LLM 5.33 3.23 

Furthermore, as shown in Table 2, the results also reveal that the community-level 

travel structure in Beijing exhibits significant spatial differentiation and temporal 

dynamics. In the spatial dimension, in the core area (such as ChaoyangCBD), the 



coverage of rail transit stations within 500 meters reaches 98%, whereas in peripheral 

communities (such as Changyang, Fangshan district), it is only 45%, directly leading to 

differences in private car dependency (15% in core areas vs. 40% in peripheral areas) In 

terms of the temporal dimension, in commuting communities, metro ridership during 

peak hours accounts for 65% of daily usage, while in cultural and tourist communities, 

the use of shared bicycles on weekends surges by 50%. 

Table 2 Characterization of travel structures in different communities 

Region 
Public 

transport 
Car 

Active 

travel 
Key features 

Zhong 

guan cun 
55% 15% 30% Subway+shared bicycle connection 

Hui long 

Temple 
40% 35% 25% 

The full load rate of the subway during the morning 

peak hour, relying on customized public transport 

Lu cheng 34% 42% 24% 
Work to residence ratio<0.8, long commuting 

distance 

Conclusion 

The analysis of regional residents' travel results and evaluation models indicates that 

the LLM model demonstrates significant improvements in various aspects compared to 

traditional models; while, the use of multi-semantic learning methods to extract regional 

spatial features effectively characterizes spatial differences between regions, addressing 

the issue of spatial variation that existing studies fail to account for; and finally, the 

analysis of Beijing reveals spatiotemporal disparities of travel structure, and this 

disparities influenced by factors such as the gradient of regional transportation 

infrastructure supply, job-housing balance, the interaction with the built environment, 

peak hours, and seasonal fluctuations, leading to different travel structures across regions. 

In the future, authorities can develop targeted strategies for optimizing community-level 

transportation systems based on the study's findings. For example, for high-density 

employment communities, micro-circulation feeder buses can be added to increase the 

share of public transport. However, this study still has some limitations. In the future, 

more diverse data could be incorporated into the model to improve its accuracy. 
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