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Abstract

Disruptions are an unavoidable aspect of transportation systems, often occurring unpredictably and varying in dura-
tion. These events impact network dynamics by affecting the punctuality of both the disrupted train and preceding
trains. Accurate information on waiting and journey times is essential for passengers during the post-disruption period
specially in systems without a predefined timetable. This study investigates delay propagation in a subway system
immediately after a disruption is resolved by modeling dwell and running times through a combination of mixture
analysis and Bayesian hierarchical models. Our proposed model uses the track occupation data from Montreal’s metro
system, and leverages incident logs in the network to separate disruptions from normal operations, enabling analysis
of process times and delay propagation.

Motivation

Operational procedures in metro systems are determined by the duration trains remain at stations, known as dwell
times, and the travel time between stations, referred to as running times, which we collectively refer to them as
process times of trains within the network. Key factors in timetable construction include dwell times at stations,
running times across different sections, and the headway between consecutive trains. Passenger journey times can be
broken down into the sum of all the dwell and running times between an origin and a destination. Modeling the joint
distribution of dwell and running times are essential in accurate estimation of journey times, however, process time
modeling is challenging due to the complex spatio-temporal correlations between dwell and running times. Delays in
transportation networks lead to longer process times, and their impacts are not necessarily contained to a single train,
station or line. During disruptions, trains often remain at stations until the issue is resolved, causing passenger buildup
at stations further along the route. As a result, the primary delay of a train can be extended to the rest of its journey
(self-propagation) causing longer dwell processes after the resolution of incident. Headway constraints force following
trains to stop at preceding stations, affecting the punctuality of subsequent trains (backward propagation). In cases
of major disruptions, the closed-loop nature of metro lines can also impact train operations in the opposite direction.
Depending on multiple factors such as location, duration and type of the delay, process times are longer during the
incident recovery period, and they tend to go back to their steady-state as time progresses. Delays can have different
cascading implications on a network level (Li, Guo, et al. 2021), and disruption management plans apply measures
to resolve traffic and prevent delay propagation to the rest of the network (Zilko et al. 2016). Running times exhibit
low variability and remain largely unaffected by external factors. The primary source of uncertainty in process time
modeling thus arises from the high variability of dwell times, which comes from the time-varying nature of passenger
flow. Our research seeks to model the distribution of dwell and running times during post-disruption periods using a
hierarchical model that accounts for the network’s structural dependencies.

Case Study

This study is motivated by the sensory track occupation data provided by the Société de transport de Montréal (STM)
for all four metro lines in Montréal, Québec, Canada. These lines collectively include 73 stations and cover a total
distance of 69 kilometers. Train operations do not adhere to a fixed timetable, with service headways ranging from 2 to
10 minutes, varying between peak and off-peak hours as well as across weekdays and weekends. Service hours extend



from 5:30 A.M. to 1:00 A.M., with slight variations on weekends. The dataset spans the entire year of 2018, con-
taining over 126 million track occupation records, with an average of approximately 240 train passes per direction on
weekdays and 150 on weekends. Additionally, disruption logs from the same period, including timestamps, durations,
locations, and causes of incidents, were provided and used to filter disruption records and analyze delay propagation
in track occupation dataset. There are 1,055 disruption records for the entire year of 2018 with an average duration
of 10.4 minutes. We synchronize the incident reports with the track occupation records of trains in the network to
examine the impact of factors such as location, distance to the incident, rush hour conditions, and more.

Literature Review

Minimum dwell time depends on boarding, alighting, and onboard passengers, while the random component’s condi-
tional distribution varies with passenger flow levels (Cornet et al. 2019). Several studies have explored the statistical
properties of dwell times indicating that they follow a heavy-tailed distribution (Li, Goverde, et al. 2014; Pang et al.
2023). Obtaining and utilizing passenger flow data for real-time predictions is challenging, as this information is often
unavailable in real-time (Li, Daamen, et al. 2016). Several data-driven approaches have been developed in recent
years to study delay propagation in railway network systems, focusing on the modeling of process times (Kecman
et al. 2015; Li, Daamen, et al. 2016; Cornet et al. 2019; Li, Guo, et al. 2021). Kecman et al. (2015) estimate railway
process times based on different statistical learning techniques such as robust linear regression and random forests,
and showed the effectiveness of covariates such as headway, peak hours, and arrival delay in process time estimation.
Li, Daamen, et al. (2016) propose a regression model to estimate dwell times at short stops during peak hours and
a non-parametric regression model for off-peak hours. Cornet et al. (2019) model dwell times using passenger flow
data, dividing it into a deterministic minimum dwell time and a random component.

Although these methods improve the empirical estimation of delays and process times, they do not take into account the
complex network structure of railway systems into their modeling, which results in complicated dependence between
operation events such as delays, control actions, and process times. Previous studies in delay propagation analysis
has explored probabilistic networks to model these dynamics (Bearfield et al. n.d.; Sun et al. 2015; Ulak et al. 2020),
with the majority of solutions relying on the Markov property in the networks (Li, Guo, et al. 2021; Corman et al.
2018). The advantage of probabilistic graphical models lies in their ability to update their belief about future events as
information is received. For example, Li, Guo, et al. (2021) propose a conditional Bayesian model that could address
different delay propagation scenarios (self, backward, and cross-line) based on the incremental running and dwell
times. Corman et al. (2018) use delay events as nodes in a Bayesian network to analyze delay dynamics and assess
its uncertainty with incoming traffic information. Ge et al. (2024) model delays through operational control actions
while relaxing the Markov assumption. They analyze how station and section control actions influence downstream
delays, considering the states of the two preceding trains. Their studies showed that section control actions have higher
intensity influence on train delays with respect to station control actions.

Methodology

We model the transitional dynamics following an incident through a Bayesian hierarchical model that captures the
autocorrelation of dwell times across consecutive trains (temporal dependence) and stations (spatial dependence). We
focus on the dwell (running) times starting at a station (section) level, specifying the dependence within a single metro
line in one direction using an autoregressive process with time-varying parameters that smoothly vary across stations.
Given the heavy-tailed nature of dwell time distributions and the varying operational adjustments after incident reso-
lution, we employ log-normal mixture models to cluster dwell processes. These clusters are informed by temporal and
spatial factors, as well as external influences such as rush hour conditions, time elapsed since incident resolution, dis-
tance from the disruption, and whether the incident was classified as prolonged. Our analysis is a two-step procedure
where, in step 1, a spatio-temporal mixture model is fitted to classify observations into different dwell operation pro-
cedures and, in step 2, a log-normal hierarchical Bayesian spatio-temporal model is used for each category to predict
the process time.

Step 1: Let Y; ; denote the dwell time of the ¢th train at station s. Given a vector of external factors x; s € R?,
the distribution of the dwell process follows a log-normal mixture model, where the mean specification is a linear
combination of dwell time of the previous train at the same station (temporal auto-regression), Y;_ s, and dwell
time of the same train at the previous station s — 1 (spatial auto-regression), Y; s_1, as well the factors related to the



disruption (x; ). If we consider the random variable Z; ; = log Y] s, then:
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where K is the number of mixtures, 7} is the mixing probability of mixture k, and ®(-) is the normal distribution
function. The asterisk (x) superscript in equation (1) is used to distinguish between the estimated parameters in the
mixture analysis (step 1) from those in the Bayesian hierarchical model (step 2). We use four covariates in our analysis
p=4: x5, = [I17i’s,$272‘7s,$371‘7$,I471‘75]T, where 1 ; 5 is a rush hour indicator, x5 ; s is the number of minutes
since the resolution of incident, x5 ; , indicates whether the incident was considered as a major disruption, and 24 ; s
is the distance to the incident location in terms of number of stations for the i-th sample.

The mixture assignments are determined using the Expectation-Maximization (EM) algorithm, which iteratively up-
dates the probability that each observation belongs to a specific mixture component. While the mixture variances
are assumed to be independent of the covariates, preliminary results indicate that the variability of the dwell process
increases during rush hours and major disruptions.

Step 2: After clustering, each component is modeled separately using a Bayesian hierarchical model. The mean
specification accounts for spatio-temporal dwell processes and external factors (x; ), but unlike the initial step, the
variance specification is also a function of covariates, namely the rush hour indicator (x4 ; ;) and the classification of
the incident as a major disruption (z3; s). A log-normal distribution is assumed for the dwell processes, as they better
account for extreme values than a normal distribution.

For mixture k, the data generating process is:
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where we assign normal priors to (3, 6, and ¢.

Preliminary Results

To showcase the model, we focus on post-disruption period consisting of up to twice the time disruption length from
incident resolution leading to a sample of 1,088 dwell times at Peel station. We use information criteria to determine
the optimal number of mixture components in step 1, which is K = 3. The results show a mean absolute error (MAE)
for predicted vs. realized dwell times of 6.65 seconds and a mean absolute percentage error (MAPE) of 8.65% across
all three mixtures based on five-fold cross validation. The three mixtures shown in Figure 1, correspond to different
dwell processes, reflecting distinct train operation procedures (short, normal, and long dwell processes). The parameter
estimates indicate positive effects of dwell processes over time and space in both short and normal modes of operation,
with Qgs,l = 0.110, (th,l = 0.161, and ngs,z = 0.086, (th,l = 0.032; however, there seems to be no significant effect for
the long dwell times in the third mixture. The mixture associated with long dwell processes shows the greatest impact
from rush hours, with a mean dwell time 3.26 times higher than periods outside of rush hour. The model demonstrates
higher accuracy for short and normal dwell operations but tends to underestimate very long dwell processes. Further
model tuning is needed to better capture long dwell times. The underestimation may be due to the high variability
and heavy-tailed nature of extreme dwell times, where the log-normal distribution struggles to fit exceptionally large
values.!
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Figure 1: Histogram of model residuals (left) and predicted vs. realized dwell times (right) for the post-incident
records at Peel station.
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