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Introduction 

Automated vehicles (AVs) are becoming increasingly prevalent, leading to mixed traffic environments where AVs 
and human-driven vehicles (HDVs) must interact. Despite the growing prevalence of AVs, research on AV-HDV 
interactions—especially in safety-critical events—remains limited. Understanding and modeling the interactive car-
following behavior of AVs and HDVs in high-risk scenarios is crucial for traffic safety, particularly as rear-end crashes 
remain a major crash type on highways. Traditional car-following models, such as the Intelligent Driver Model (IDM) 
and Gipps' model, primarily describe normal driving behaviors but fail to capture evasive maneuvers in high-risk 
situations. Moreover, while recent studies (e.g., (Kontar and Ahn 2024)) examine AVs' ability to avoid collisions with 
lead vehicles, they often overlook how following HDVs adapt their responses to AVs. This is a critical gap, as AV 
maneuvers can influence human drivers' risk perception, reaction times, and decision-making, ultimately affecting 
traffic stability and crash risks. Addressing this gap is essential for improving safety-aware traffic simulations and 
informing AV control strategies to enhance crash prevention. 

Third Generation Simulation Dataset (TGSIM) (Talebpour et al. 2024) developed by the U.S. Department of 
Transportation provide opportunities to enhance our understanding of AV-HDV interactions in safety-critical events, 
the. While the Next Generation Simulation (NGSIM) dataset (Alexiadis et al. 2004) primarily focuses on HDVs , 
TGSIM offers detailed trajectory data for both HDVs and SAE Level 1–3 AVs, capturing the complexities of mixed-
traffic environments. The dataset contains high-resolution vehicle trajectories recorded through fixed-position aerial 
videography, moving aerial videography, and infrastructure-based videography. It covers urban and highway 
environments, including Chicago, IL, and Washington, D.C., with major highways such as I-90/I-94, I-294, and I-395. 
Key data fields include time-stamped vehicle positions, lane assignments, speed, acceleration, and vehicle type, 
making TGSIM a valuable resource for analyzing AV-HDV interactions, safety-critical events, and adaptive vehicle 
control strategies in mixed traffic. 

This study aims to model interactive car-following behaviors in safety-critical scenarios involving a leading HDV, an 
AV, and a following HDV. Specifically, we examine how the AV responds to the leading HDV and how the following 
HDV adapts its behavior to the AV's maneuvers to mitigate collision risks. A multi-agent state-space attention-
enhanced deep deterministic policy gradient (MA-ASS-DDPG) framework is proposed, leveraging a multi-agent 
structure to capture dynamic interactions while integrating state-space modeling for temporal dependencies and 
attention mechanisms for prioritizing critical motion features. By integrating TGSIM, which offers high-resolution 
trajectory data on real-world AV-HDV interactions, the proposed framework enables a more data-driven analysis of 
AV behavior and its impact on traffic dynamics, enhancing mixed-traffic modeling and AV deployment strategies. 

Data Collection  

The TGSIM dataset examines the impact of automated driving and advanced driver assistance systems on human 
behavior in real-world conditions. It is publicly available via the U.S. Department of Transportation 
(https://catalog.data.gov/organization/dot-gov). This study focuses on AV's car-following behavior on highways and 
HDV's corresponding behaviors following AV. To ensure precise analysis of these interactions, the I-294 and I-395 
datasets were utilized compassing extensive data on SAE Level 1 and Level 2 automated systems.  

AVs and HDVs were classified systematically, as shown in Figure 1. To quantify the potential collision risk between 
an AV and a leading human-driven vehicle (LHDV), the TTC is calculated. TTC represents the time required for an 
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AV to reach the rear end of LHDV, assuming both vehicles maintain their current speeds and directions. It is expressed 
as: 

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐴𝐴𝐴𝐴 −
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2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 _𝑘𝑘𝑘𝑘𝐴𝐴𝐴𝐴 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 _𝑘𝑘𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

         𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 _𝑘𝑘𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 < 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 _𝑘𝑘𝑘𝑘𝐴𝐴𝐴𝐴 (1) 

 
where xloc_kfAV and xloc_kfL are the xloc_kf coordinates of the AV and LHDV, respectively, 𝐿𝐿𝐴𝐴𝐴𝐴 and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 are 
their respective vehicle’s lengths, and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 _𝑘𝑘𝑘𝑘𝐴𝐴𝐴𝐴 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 _𝑘𝑘𝑘𝑘𝐿𝐿  are their respective speeds. If the two vehicles 
have the same speed, TTC is set to infinity, indicating no risk of collision under these conditions. 

 

Figure 1: Car-Following Scenario in a Mixed-Vehicle Platoon of HDVs and AVs 

After processing, records meeting specific AV conditions and their corresponding LHDV and following human-
driven vehicles (FHDV) were identified. TTC values between 0 and 10 seconds quantified interaction dynamics. A 
valid interaction dataset was generated from the combined data (id, L_id, F_id) after removing records with missing 
values. Vehicle pairs with more than 10 recognition instances were selected, resulting in 150 valid AV-surrounding 
vehicle pairs across 4504 time steps. This dataset is the foundation for developing the MA-ASS-DDPG framework, 
facilitating a deeper understanding of vehicle interactions in mixed-traffic environments. 

Methodology 

This research models the car-following dynamics of two agents (AV and HDV) as a two-player interaction framework. 
The AV adjusts its actions based on the leading HDV’s acceleration or deceleration to prevent collisions, while the 
following LHDV observes the AV’s behavior and changes its actions accordingly. This creates a dynamic interaction 
where one agent's decisions impact the other's behavior, reflecting a cooperative-competitive relationship in mixed-
vehicle platoons. 

The MA-DDPG is adopted in this study to model the car-following behaviors of HDVs and AVs in mixed-traffic 
environments. This approach extends the DDPG, an off-policy reinforcement learning algorithm that leverages deep 
function approximators to learn policies in continuous action spaces (Pu et al.). By employing centralized training 
with decentralized execution, MA-DDPG effectively handles the complexities in multi-agent systems, as shown in 
Figure 2 (a). In the setup, each actor 𝜇𝜇𝑖𝑖 operated using only its local observations 𝑂𝑂𝑖𝑖  to make decisions. While the 
critic 𝑂𝑂𝑖𝑖  gains access to extra information, such as the actions 𝐴𝐴𝑖𝑖 of other agents, during training. This centralized 
training with a decentralized execution framework allows the model to learn efficiently by leveraging the global 
context during training while maintaining independent operation during execution. By incorporating this approach, 
the model stabilizes the learning environments, even as agents adapt and update their policies, ensuring consistent and 
effective performance in dynamic, multi-agent scenarios. Thus, MA-DDPG may be suited for modeling mixed 
cooperative-competitive behaviors between vehicles and pedestrians in safety-critical scenarios. 



Simultaneously, traditional reinforcement learning algorithms often prioritize common safe driving behaviors while 
neglecting rare but crucial near-miss scenarios. The interactions between HDVs and autonomous vehicles (AVs) in 
car-following situations are highly dynamic, with strong temporal dependencies and varying traffic states. 
Conventional methods struggle to capture these complexities and reconstruct safety-critical behaviors. To address this, 
the Attention Mechanism and State-Space Model dynamically extract key temporal features from HDV-AV 
interactions, as shown in Figure 2 (b). The State-Space Model further complements the Attention Mechanism by 
capturing complex temporal dependencies. As illustrated in Figure 2 (c), the model processes input features through 
structure state transitions using matrix multiplications and summations. The red arrows in the figure represent updates 
during training, ensuring that the model learns effectively over time, while the blue arrows represent the state 
representation, capturing the evolving traffic states. 

 

Figure 2: (a) Overview of MA-DDPG structure (Lowe et al. 2017); (b) The Transformer Attention Mechanism 
(Vaswani 2017) ; (c) Mamba: State-Space Model (Gu and Dao 2023) 

Results and discussion 

To assess the performance of the MA-ASS-DDPG model, a comparative study was conducted against several baseline 
models, including DDPG, MA-DDPG, MA-LSTM-DDPG, MA-Transformer-DDPG, MA-Mamba-DDPG, and 
supervised learning models such as Transformer, LSTM, IDM, and Neural Network (NN). The model’s reward 
function ( Reward𝑣𝑣) serves as the basis for evaluation. The MA-ASS-DDPG model consistently achieves the lowest 
RMSE across critical variables, including velocities ( 𝑣𝑣𝐴𝐴𝐴𝐴 and 𝑣𝑣𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ), accelerations ( 𝑎̂𝑎𝐴𝐴𝐴𝐴 and 𝑎̂𝑎𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ), and distances 
( Δ𝐷𝐷𝐴𝐴𝐴𝐴 and Δ𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ). The detailed analysis reveals that: 

• For AVs, the MA-ASS-DDPG model delivers outstanding performance with the lowest RMSE values for 
velocity (𝑣𝑣𝐴𝐴𝐴𝐴 = 0.193) and acceleration (𝑎̂𝑎𝐴𝐴𝐴𝐴 = 0.236), effectively capturing evasive maneuvers. 
Furthermore, its distance predictions ( Δ𝐷𝐷𝐴𝐴𝐴𝐴 = 0.292 ) emphasize its reliability in handling near-miss 
scenarios. 

• For FHDVs, the model achieves similar results, with minimal RMSE values for velocity (𝑣𝑣𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0.181), 
acceleration (𝑎̂𝑎𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0.251), and distance (Δ𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0.265 ), validating its ability to replicate human 
driving behavior in response to AV actions. 

In conclusion, the MA-ASS-DDPG model is the most effective framework for reconstructing AV and FHDV 
behaviors in safety-critical scenarios. Its integration of the velocity-based reward (Reward 𝑑𝑑𝑣𝑣 ) enables it to balance 
the proactive strategies of AVs with the reactive responses of FHDVs, achieving unparalleled accuracy. This capability 
is essential for advancing traffic safety research and improving the realism of vehicle interaction modeling in near-
miss scenarios. 



Figure 3 illustrates the dynamic car-following interactions between LHDV, AV, and FHDV. The first subpicture 
shows the TTC between the AV and LHDV, where the TTC drops at 162 seconds, prompting the AV to decelerate 
and restore a safe following distance, while the FHDV adjusts its speed accordingly. The position and distance curves 
indicate that the AV maintains a stable trajectory between the LHDV and FHDV, adapting its speed to prevent unsafe 
proximity. The speed curve shows that as the LHDV slows at 162 seconds, the AV follows suit, and the FHDV 
modulates its speed to maintain stability. The MA-ASS-DDPG framework accurately replicates real-world car-
following dynamics, effectively replicating real-world interactions and ensuring safe car-following behaviors under 
mixed-traffic conditions. 

 

Figure 3: Example of trajectory reconstruction 

Conclusion 

This study introduces the MA-ASS-DDPG framework, a novel approach for modeling AV-HDV interactions using 
TGSIM, marking the first exploration of this dataset for reconstructing real-world car-following scenarios and 
validating the proposed framework. By integrating an Attention Mechanism and State-Space Model within a multi-
agent framework, the model prioritizes critical motion features and captures temporal dependencies, enhancing the 
accuracy of car-following and collision avoidance dynamics. The findings reveal that AVs execute collision avoidance 
in near-miss scenarios and influence the adaptive behavior of following vehicles, improving traffic safety and stability. 
This research provides valuable insights for autonomous vehicle deployment and mixed-traffic modeling, with future 
work focused on expanding dataset diversity and refining reward structures to further optimize performance. 
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