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Population synthesis refers to models that aim to create an artificial yet realistic population of observations from
existing but limited disaggregated datasets. The information generated can be used for various purposes, including
modeling, optimization, simulation, or, in general, generating new information for an application of interest [4]. In
transportation research, these synthesizers have been extensively employed [[19]. This capability is particularly valu-
able in agent-based models, such as transportation models based on micro-simulation, where understanding the spatial
implications of policies is critical [14,[15].

A desirable property of any population synthesizer is to preserve the general characteristics of the population,
which leads to different technical approaches. The most widely used, until recently, has probably been the Iterative
Proportional Fitting (IPF) [5], popularized in transportation by Duguay et al. [6]. IPF selects households from the
source sample while attempting to match given marginal totals, requiring a fitting stage and an allocation stage. In
the fitting step, a contingency table is computed from the seed table (the source sample) and the marginal totals.
In the allocation phase, households are randomly selected from the seed table to match the frequency given in the
contingency table. However, the method presents several significant flaws, such as sampling zero issues Guo and Bhat
[8].

Ye et al. [20] consider simultaneously fitting different types of agents and propose a heuristic approach called
Iterative Proportional Updating (IPU), but they fail to accommodate the new synthetic information at multiple geo-
graphical resolutions simultaneously, leading to a loss of representativeness. Konduri et al. [12] extend their efforts
by proposing an enhanced IPU algorithm that accounts for constraints at different levels of spatial resolution when
generating a synthetic population. Farooq et al. [[7]] point out that fitting a contingency table to the available data may
lead to errors if the information is incomplete or has been manipulated. They propose a Markov Chain Monte Carlo
(MCMC) simulation-based approach (further explored, for instance, in Saadi et al. [17], Kukic et al. [13]) that uses
partial views of the joint distribution of the real population obtained from the census to generate high-dimensional
synthetic populations.

To properly reflect the properties of the population it aims to mimic, a synthetic population must share the same
joint distribution of the variables it encapsulates. Various methods have been proposed to achieve this goal, but with
a few notable exceptions [1], most rely on samples from a target population, such as census data or travel surveys,
which can be costly to obtain. This often results in limited sample sizes, especially at smaller geographical scales.
Additionally, some regions, such as those at the census tract level, may lack detailed data entirely, providing only
marginal totals—which effectively represent the attribute distributions of these regions. Traditional methods like
re-weighting estimate sampling weights from the attribute distributions in each district and simulate the population
from the weighted samples [3, 16, 9]. However, re-weighting cannot produce attribute combinations not observed in
the training samples but present in the actual population. More recent approaches, based on generative models, can
generate new, out-of-sample attribute combinations due to their probabilistic nature but do not explicitly integrate the
attribute distributions of the area under study [[18} 2, |11]]. Consequently, there is an increasing demand for population
synthesis methods that can generate new samples while accurately matching the aggregate totals of the studied region.
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We consider the framework proposed by Jutras-Dubé et al. [[10] capable of generating synthetic data for a target
population by utilizing only known marginal totals, in combination with a sample from another population that exhibits
similar structural relationships among variables. The approach integrates copula theory with machine learning (ML)
generative modeling techniques to separate the learning of dependency structures from that of marginal distributions.
This separation facilitates the framework’s application across different populations with varying marginal distributions.
A key advantage of this method is that it eliminates the need to select a specific copula family, allowing to choose the
generative model that best fits the context of the population under study. It also gives the opportunity to fully leverage
the capabilities of probabilistic generative models, which have been shown in recent literature to be highly effective in
capturing complex dependencies between variables and generating diverse data [[11]].

Since a copula is a multivariate distribution on [0, 1]¢, the first step is to cast the observations as vectors in [0, 1]%.
This can be easily achieved by considering the empirical CDF (ECDF) of each feature X;,i =1, ..., d, defined as
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p < q) for the i-th marginal. However, as the marginal distribution functions of the source and target populations are

typically discrete but with different ranges, we first construct the relaxed ECDF F; (+) as the continuous piecewise linear

where 1 is the indicator function and {x } is the ordered set of distinct observations (i.e. x

function obtained by considering the linear interpolations between consecutive values F (a:gk)) and F; (xgkﬂ)),
k =1,2,...,m; — 1. We then extend the copula C to the domain [0, 1]¢ by setting C (Fl(xl), cey Fd(xd)) as the
linear interpolation, component by component, from
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with xl(.ki) <z < xﬁkiﬂ), k=1,2....,m; —1,4i = 1,...,d (see [10] for more details). We then draw the

number of desired observations by drawing from C' and transforming the realizations in the required marginals using
the pseudo-inverse distribution function, as summarized in Algorithm|[I]

to

Algorithm 1: Synthetic population generation

Step 1 Normalize the source population data using the ECDFs FZ() i=1,...,d.
Step 2 Train the model on the normalized data to learn a copula C'.
Step 3 Generate a synthetic population of vectors in [0, 1]% by sampling from C extended to F;(-), i =1,...,d.

Step 4 Transform any generated vector u = (uq, ..., uq) in a vector y in the target population as

Y= ((FIY)_l(ul% SRR (Fc%/)_l(ud)) )

where (Y )~1(-) is the pseudo-inverse distribution function of the i-th target marginal, defined as
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(FY)™'(u) = min {x(j) :FY (:z:l(j)) > u} .

Numerous choices can be made to select the model at Step 2, for instance Bayesian Networks, Variational Au-
toencoders, and Generative Adversarial Networks. We applied the proposed approach on data from the American
Community Survey (ACS), and analyze the model’s transferability across various geographical levels, including state,
county, Public Use Micro Areas (PUMA), and census tract, as illustrated in Table m reporting standardized root mean
square errors (SRMSE), where BN stands for Bayesian network, the best found model for this dataset.

ML models have the capacity to generate attribute combinations that are not observed in the population sample,
particularly when the sample size is small and the probabilities of such combinations are low but not zero. Following



Method SRMSE 1 | SRMSE2 | SRMSE 3 | SRMSE 4 | SRMSE 5§
Independent 0.3442 0.8723 1.6720 3.0777 5.9539
IPF 0.7020 1.5510 3.0708 6.2470 13.4378
BN 0.3334 0.7402 1.4119 2.6954 5.4334
BN Copula 0.0350 0.3221 0.8658 1.9979 4.5310

Table 1: Standardized root mean squared error (SRMSE) for the spatial transferability experiment from the county to
PUMA levels

the methodology established by Kim and Bansal [11]], who extensively discuss this desirable property, they propose
computing the F'1 score of the generated population with respect to the entire original population. A false positive is
declared when an observation absent in the original population is generated, while a false negative is assigned to zero
cells when the corresponding feature combination is present in the original population. However, when computing
structural zeros and the F'1 score, one faces the challenge of not having access to all feasible attribute combinations
within the target population—a dataset we naturally do not possess. To overcome this limitation, we assume that our
entire state sample encapsulates the complete population, as this enables us to estimate structural zeros by identifying
combinations absent in this comprehensive sample, thus treating it as a complete representation of feasible combina-
tions. The F'1 score is then calculated within this framework to evaluate the balance between precision, which reflects
the proportion of feasible synthetic data, and recall, which measures the coverage of these feasible combinations within
the generated data, as illustrated in Table[2] taken from [10]. However, misclassification of sampling zeros as structural
zeros can occur because rare but feasible combinations may be absent from the dataset due to their low occurrence
probabilities. As a result, the number of structural zeros is typically overestimated, and the F'1 score undervalued.

Method Sampling Zeros | Structural Zeros | Precision | Recall | F'1 Score
Independent 200 21289 0.2306 0.3148 0.2662
IPF 0 0 1.0000 0.0889 0.1633
BN 245 2367 0.7941 0.4505 0.5748
BN Copula 236 2871 0.7583 0.4446 | 0.5605

Table 2: Diversity and feasibility of the synthesised population at the state level

While encouraging, the F'1 scores indeed remain low and are lower than those reported by Kim and Bansal [[11]
in their experiments. This was, however, expected due to the size of the original datasets, which do not capture all
possible combinations, thereby limiting the validation of the proposed approach. To address this issue, we examine
large synthetic datasets, both without and with model transfer, and demonstrate that knowledge of the true population
distribution allows for obtaining F'1 scores closer to one.

We also investigate the effect of synthetic population mis-specifications on a simple logit model. Specifically, we
show that market shares are not properly recovered when the SRMSE is large, along with a significant number of
misidentified zero cells, as seen in the case of IPF, where the multivariate distribution governing the population of
interest is not properly captured. On the other hand, the proposed copula-based method mitigates these undesirable
effects, particularly when considering model transfer, allowing for a better estimation of the market shares of the
choice options.
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