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1. Idle vehicle repositioning in ride-hailing  
Idle vehicle repositioning is crucial for the efficient operation of most ride-hailing systems, where rider 
demand and driver supply often do not align across different locations and times. This imbalance 
negatively affects both drivers and riders by reducing operational efficiency and service quality. Currently, 
when drivers become available after dropping off passengers, the platform does not provide specific 
guidance on where they should go next to anticipate future rider requests. As a result, drivers must rely 
on their own experience to predict demand and travel to areas where they believe new requests will 
emerge. If the actual demand does not meet their expectations or if too many drivers converge in the 
same area, they may end up waiting for long periods without receiving any ride assignments. 
Consequently, they must reassess the situation and move to other regions. This ad-hoc prediction-based 
approach to finding rides leads to high operational costs for drivers and creates negative social impacts, 
such as increased urban congestion and emissions[1].  

To address this issue, ride-hailing systems have implemented indirect vehicle repositioning guidance 
strategies like surge pricing to draw drivers to areas where demand exceeds supply, potentially reducing 
wait times [2]. However, with surge pricing, drivers can only gauge demand based on surge price levels, 
and their relocation decisions are uncoordinated. This often leads to an oversupply of surge chasing 
drivers in some areas while worsening supply shortages in others, resulting in longer overall wait times 
for riders across regions and increased idle driving costs for the drivers [3], [4]. Optimal repositioning in 
ride-hailing is crucial for drivers, riders, and platforms. By strategically repositioning, drivers can minimize 
the idle time spent waiting for their next ride, which increases overall efficiency leading to more rides per 
hour, increasing the revenue for both drivers and the ride-hailing platform. Driver satisfaction and retention 
can also be improved. Optimal repositioning helps ensure that vehicles are available where and when 
they are needed most, reducing waiting times for riders, enhancing the overall customer experience, 
leading to higher satisfaction and potentially more repeat customers. 

Existing approaches to repositioning problem in ride-hailing can be categorized into reactive and proactive 
strategies [7].  Reactive strategies attempt to rebalance vehicles within the system after rider demands in 
different regions are realized. Given the existing vehicle positions and rider demands, these methods 
optimize the vehicle-rider assignments to reduce idle detour miles and rider wait times [9]. Overall system 
performance can also be improved by strategically rejecting demand at low-demand locations and inducing 
driver repositioning to high-demand locations [10]. On the other hand, repositioning strategies that 
anticipate riders’ demands before they are realized are proactive. These strategies relocate the vehicles to 
the regions where high demand is expected. For example, Model predictive controller (MPC) leverages 
short term rider demand forecast to optimize the control actions over a set of time horizons [5] [6]. Time-
Series Model based demand prediction methods such as ARIMA [7], and Graph Neural Networks (GNNs) 
[8] are used for learning spatial-temporal rider demand patterns and guiding repositioning decisions. Most 
proactive repositioning methods consist of repeated optimization based on prediction on historical data 
repeatedly over a moving time horizon to choose the next control action. 

In addition, reinforcement learning (RL) has emerged as a powerful tool for optimizing taxi repositioning 
and dispatching decisions for independent drivers who maximize their own reward functions [11] and for 
tackling the full fleet management and dispatching problems at the systems level [12]. Among other 
approaches, multiagent reinforcement learning are used to address heterogeneity of drivers in a region  
[13]. In [11], a practical deep RL method are designed for large-fleet repositioning. The authors recruited 
1200 drivers from a large ride-hailing platform participating in their data collection, model design and 
validation processes, which provides first-hand experience on applying their proposed RL model to the 
repositioning problem in ride-hailing. Compared with commonly used prediction and optimization-based 
methods such as MPC, RL models can compute large-scale repositioning solutions faster. However, most 
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proposed RL models for repositioning are off-line in the sense that they lack real-time adaptability and react 
only to historical data, without considering newly introduced changes in the environment, for example, ride 
demand and traffic pattern shifting and added transport infrastructures such as newly installed charging 
stations. Since these changes were not represented in the historical data, the RL models may compute 
repositioning decisions that are far from optimal given the changed environment and, in some settings such 
as EV taxi fleet, are infeasible to execute due to EV range limits and charging constraints.     

We propose an integrated digital twin (DT) and reinforcement learning framework for making driver 
repositioning decisions. By leveraging the synthetic data generated by the digital twin of the ride-hailing 
environment, the RL model are trained on changes and scenarios which do not appear or are not sufficiently 
represented in the available historic data sets. The digital twin also allows virtual testing of repositioning 
strategies on various fleet configurations and future infrastructure expansions. With a modular scalable 
design, our system adapts to evolving urban mobility, including autonomous and electric vehicle strategies. 

2. Integrated digital twin and reinforcement learning framework 
The digital twin architecture design We propose a digital twin (DT) architecture for implementing urban 
mobility digital twins in mobility-on-demand (MoD) settings, called MoD-DT. Using the MoD-DT architecture, 
designer can flexibly implement digital twins for mobility systems with various types of datasets, road 
networks, operation algorithms and strategies. MoD-DT provides structural support for integrating machine 
learning (ML) modules in digital twins. It serves as a test bed and playground for testing the performance 
of various ML algorithms in MoD settings.  

 
Figure 1: MoD-DT architecture design 

Figure. 1 illustrates the structure and components of the proposed MoD-DT. The framework consists of five 
modules, namely (1) Vehicle; (2) Rider; (3) Platform; (4) Road network; (5) Outputs.  

• Various agent structures, preferences and decision-making models are included in the Vehicle module 
for constructing driver agents representing the drivers and their vehicles in classical ride-hailing settings 
or robotaxi agents representing the autonomous driving vehicles and their owners. The vehicle can be 
either electric or internal combustion. Driver agents use neural networks and machine learning, such 
as reinforcement learning, for decision-making. Their internal states (location, battery level, ride status, 
assigned trips) are updated by the digital twin, while external states like traffic, demand, surge pricing, 
and charging station availability are also provided to the driver agent by the digital twin. 

• Similarly, we design agent structures, preferences, and decision-making models in the Rider module 
to construct rider agents representing the riders in the ride-hailing systems. Rider module has the 
functionality of generating real-time rider requests based on current and projected ride demands. 
Neural networks and machine learning models are used for rider request generation and demand 
prediction.   
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• The Platform module incorporates optimization models, machine learning algorithms, to construct 
central operation control functions of the MoD-DT, such as matching ride requests with available drivers, 
minimizing wait times, considering factors such as distance, availability, and charging levels when 
dispatching vehicles. The module also continuously monitors the MoD environment, such as traffic 
conditions, rider demands and makes predictions in terms of traffic patterns.  

• The Road Network Module provides location information for both drivers and riders. It integrates 
OpenStreetMap and AnyLogic simulation to calculate optimal routes, supplies traffic and congestion 
data, positions and configures charging stations for EVs. It also provides real-time locations of vehicles 
and riders to facilitate vehicle dispatching operations by the central operation control platform. 

• The output module generates simulation visualizations and performance reports. It also evaluates 
repositioning efficiency in real time and posts key KPIs. As shown in Figure 2, the user interface 
consists of a map section which shows the real-time position and movement of vehicles and riders and 
four information windows. The black window on the left-hand side of the map shows the dynamic log 
of the state changes and actions of the vehicles, handling order, pickup, drop-off and charging. The 
upper three windows define map legend (top-left), the simulation setup and matching status (top-
middle), and show the comparation of the repositioning efficiency (expected incomes in this case) of 
different repositioning strategies.   

Integrating reinforcement learning for ride-hailing repositioning As mentioned in the previous 
subsection, MoD-DT provides structural support for integrating machine learning modules in the digital twin 
implementations. For example, for the purpose of providing drivers with repositioning decisions, RL models 
can be used by driver agents to compute optimal reposition locations after dropping off a rider. The RL 
model can be trained using the synthetic data generated from the MoD digital twin based on the scenarios 
generated based on historical ride request transaction data and added features such as charging networks 
to be installed. In the meantime, the digital twin also provides a safe virtual environment to train and validate 
RL models and to execute workflow simulations to test and analyze different operational strategies before 
real-world deployment. 
 

 
Figure 2: the output interface of MoD-DT with New York City Map and Taxi Data 
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3. Case Study 
This case study demonstrates the implementation of the MoD-DT architecture in a ride-hailing setting and 
the integration of the DT with a RL model for generating idle vehicle repositioning strategies. The RL model 
makes repositioning decisions for an EV taxi driver based on their internal state including their current 
location, time of the day, and state of the charge (SOC). The RL model is trained using the New York City 
historic taxi dataset (https://databank.illinois.edu/datasets/IDB-9610843). In this dataset, New York city is 
divided into 263 districts. Taxi transaction records showing pick-up and drop-off districts and times are 
provided. Our research question here is to know what the best repositioning strategy is if current taxi fleets 
are replaced by EV fleets. Since the existing data set does not reflect EV fleets, we would generate synthetic 
transaction data with EVs and charging stations based on the rider demand represented in the existing 
dataset. The policy of the driver agent is to maximize long term (one day) income by optimizing their 
repositioning decisions, meaning that they reposition themselves to the positions with high likelihood to be 
matched with high-dollar-value orders. Figure 2 shows a small case study for ride-hailing EV repositioning. 
We deployed a group of 7 Green EV taxis and a group of 7 Red taxis. Green taxis use the RL model to 
make repositioning decisions, while red taxis cruise randomly after dropping off a customer in the hope of 
being matched to a ride request along their cruising route. Ride requests are dynamically generated across 
the city to reflect real-world demand patterns. The simulation runs for a full day in simulation time, during 
which key performance indicators are continuously recorded and displayed in the information windows. As 
shown in Figure 2, Green taxis, which use RL for repositioning, outperform red taxis in terms of average 
income. The purpose of this small case study is to demonstrate the function of the digital twin. We will report 
on larger scale digital twin simulations for MoD applications in the near future. 
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