
Strategic API Calls to Retrieve the Cost Matrix in the Travelling Salesman Problem

Hesam Rashidi*1, Mehdi Nourinejad2, Matthew Roorda1

1Civil and Mineral Engineering, University of Toronto, Canada
2Civil Engineering, York University, Canada

1 INTRODUCTION

Routing in last-mile deliveries is typically formulated as a Travelling Salesman Problem (TSP), where an algorithm
(e.g., nearest neighbour heuristic) uses a cost matrix, such as a travel time matrix, to determine a near-optimal or
optimal tour starting and ending at a depot while serving all customers. The quality of TSP solutions depends on
the routing algorithm and the accuracy and practicality of the input cost matrix. Common approaches to generat-
ing the cost matrix for last-mile routing include (1) Euclidean distances, (2) pre-trained machine learning models,
and (3) third-party API services.

Euclidean distances are computationally efficient but do not capture real-world travel times or dynamic condi-
tions such as traffic or closures. Pre-trained machine learning models offer more accurate estimates but require
extensive historical data for training and do not reflect real-time traffic conditions. Third-party API services, such
as Google Maps and Mapbox, provide near real-time travel time estimates. However, these services come with
limitations, including rate limits on requests, matrix size restrictions, and variable pricing models based on the
volume of data retrieved. For example, Mapbox allows a maximum of 10 input coordinates per call and 30 calls
per minute, while Google Maps permits 25 input coordinates per call and up to 600 calls per minute, with a limit
of 100 elements per server-side request (Google, 2025; Mapbox, 2025). These constraints can create bottlenecks in
solving large-scale TSPs.

This study demonstrates that making strategic API calls can reduce costs and processing time while still achiev-
ing near-optimal solutions to the TSP. We developed a data-driven framework that operates without requiring pre-
training, making it adaptable and applicable in near real-time scenarios. Rather than retrieving the travel times
for all possible pairs of stops, which is often infeasible for large problem instances, the framework prioritizes the
retrieval of travel times only for those pairs of stops that are most likely to be visited consecutively in the optimal
TSP solution.

2 METHODOLOGY

Consider a complete digraph G(V , A) representing a TSP instance, where V = {v0, v1, ..., vn} shows the set of depot
and delivery points and an arc ai j ∈ A connects node vi to node v j for all vi , v j ∈ V . The travel time between
the stops is given by a cost matrix T = [ti j], where ti j denotes the travel time over arc ai j ∈ A. Note that T is
asymmetric, non-metric, and the travel time from any delivery point to itself is zero. A feasible TSP tour s ∈ S is a
sequence that starts at v0 (i.e., depot), visits each node vi ∈V \{v0} exactly once, and returns to v0, where S denotes
the set of all possible feasible tours. The optimal TSP tour, denoted by s∗ ∈ S, is a feasible tour with minimal total
travel time. Classical routing algorithms use a complete cost matrix (e.g., the travel time matrix T) to solve s∗ for a
TSP instance. In the scenario under study, it is assumed that the cost matrix T is constructed by making API calls
to retrieve the travel times for the arcs. The following explains the definitions used in the developed framework:

Definition 1. Sampling an arc ai j ∈ A refers to making an API call to retrieve the travel time ti j , which is then
recorded in a travel time matrix denoted as T̂ . The matrix T̂ represents the sampled version of the complete travel
time matrix T , where only a subset of the arcs in A have their travel times retrieved from API calls and recorded.
For arcs that have not been sampled, their travel times in T̂ are imputed based on the available sampled values.
The methodology used for imputing unsampled travel times is explained in the following section. If all arcs were
to be sampled, then T̂ would be identical to the complete cost matrix T .

Definition 2. The true length of a spanning subgraph H ⊆ G (e.g., a tree or feasible TSP solution) refers to the
sum of sampled travel times of the arcs in H and is shown by L(H). Let L̂(H) represent the length of H computed
using the travel times from T̂ , which may include a mix of sampled and imputed values. If all arcs in H have been
sampled previously, then L̂(H) = L(H).

The objective is to construct T̂ with a minimal number of sampled arcs such that a classical TSP solver can use
it as the cost matrix to find a feasible sequence s, where the sampled length of s, L(s), closely approximates the
sampled length of the optimal sequence, L(s∗). The process consists of three components: (1) the arc selection
strategy, which determines which arcs to sample, (2) the imputation strategy, which estimates the missing values

1

in T̂ using the travel times of the sampled arcs, and (3) the stopping strategy, which establishes when L(s) is suffi-
ciently close to L(s∗) without directly knowing L(s∗). Figure 1 illustrates the four-step framework developed in this
study, combining the mentioned components.

In Step-0, the framework initializes the problem instance by constructing the Euclidean distance cost matrix,
D = [di j], where di j represents the Euclidean distance between vi and v j , and calculates the bearing angles. The
bearing angles represent the direction from one location to another, expressed in degrees relative to the north
(i.e, 0°). These initial calculations are used for imputing unsampled arcs in T̂ and to rank the arcs based on their
likelihood of being part of the optimal TSP solution. We use the α-nearness method to rank the instance’s arcs,
ai j ∈ A, based on their likelihood of being present in the optimal TSP solution constructed from the Euclidean dis-
tance matrix (Helsgaun, 2000). As a benchmark, we compare the performance of the α-nearness method against a
random arc selection strategy.

In Step-1, a lower bound and an upper bound for the TSP instance are computed using D . The subset of arcs
present in these bounds are sampled, which serve as the basis for constructing the initial T̂ . For the upper bound,
we use the Nearest Neighbour (NN) heuristic, and for the lower bound, we use a spanning subgraph called a min-
imum one-tree (Held & Karp, 1970; Helsgaun, 2000). Steps-2 and -3 iteratively sample arcs and update T̂ until
the stopping criterion is met. In each iteration, in addition to the arcs sampled in the bounds, we sample an
additional arc based on the ranking provided by the arc selection strategy in Step-0. An imputation function is
employed to estimate the missing values in T̂ using the sampled arcs. We impute the value of t̂i j , the travel time
over an unsampled arc, using a linear model. This model is trained on the travel times of sampled arcs, with the
Euclidean distance of the arc and its bearing angle as the independent variables. The loss function is defined as
loss =∑

i
∑

j |ti j − t̂i j |. This loss function enables the imputation function to be trained using linear programming,
which can be calculated in near real-time. As a benchmark, we compare the performance of the linear regression
imputation strategy against a K-Nearest Neighbour (k-NN) imputation strategy (Pedregosa et al., 2011).

The stopping criterion strategy monitors changes in the sampled length of upper bound and lower bound be-
tween iterations. If the bounds stabilize, with their relative changes falling below a predefined threshold (e.g., 5%),
they most likely contain the arcs present or close to being present in s∗ (i.e., T̂ is likely to have sampled the arcs
close to being present in s∗). Once the threshold is reached, the framework performs 10 additional iterations to
ensure stability before stopping. The bounds are computed using T̂ as the cost matrix, except during initialization
(Steps 0 and 1), where the Euclidean distance matrix (D) is used. Once the framework determines that the stop-
ping criterion is met, the constructed T̂ is passed to OR-Tools (Perron & Furnon, 2023) to solve the TSP instance.
The sampled length of the resulting sequence is then used to evaluate the quality of the solution. This study was
implemented using a Macbook Air with an eight-core Apple M2 chip and 16 GB of RAM.

Figure 1: The visual abstract of the developed framework.

2

3 RESULTS AND DISCUSSION

This study uses the open-source dataset from Amazon’s Last-Mile Research Challenge, which contains 6,112 his-
torically realized TSP instances in five cities in the United States. For descriptive statistics and more information
about the data, refer to Merchán et al. (2022).

Figure 2 illustrates a sample problem instance. The line plots with markers illustrate the sampled values of the
lower bound (blue), upper bound (red), and the TSP tour duration (black) computed by using T̂ (i.e., T̂ was used
to generate the mentioned subgraphs and then their arcs were sampled to retrieve their true length). The dashed
lines represent the true values of the lower bound, upper bound, and optimal TSP tour duration, calculated using
the fully sampled travel time matrix T (these lines are not calculated as part of the framework and are for demon-
stration only). According to Figure 2, after 12 iterations, the quality gap between the solution generated by the
framework and the optimal TSP solution computed using T is 5.3%. Notably, only 1,328 arcs are sampled for a
problem size of 166 stops (i.e., 4.8% of arcs were sampled).

Figure 2: Framework applied to a sample problem instance.

The results of the algorithms are summarized in Figure 3, which compares their performance across three met-
rics: (a) runtime relative to the baseline, (b) quality gap compared to the baseline, and (c) the number of arcs
sampled as a ratio of the total possible arcs. These results are based on a simulation of retrieving arcs from the
Google Maps Travel Time API, taking into account the service limitations, such as rate limits and processing time,
to reflect realistic constraints associated with API usage (Google, 2025). The baseline represents the case where
the optimal TSP sequence is generated using the complete travel time matrix. The "Euclidean" algorithm uses the
Euclidean distance matrix to generate the optimal TSP sequence, followed by sampling its arcs. The other algo-
rithms explore variations of the proposed methodology, combining different arc sampling strategies (α-nearness
and random selection) and imputation methods (linear regression and k-NN).

Figure 3a shows the runtime comparison of the algorithms relative to the baseline. The Euclidean algorithm is
the fastest and requires sampling the least number of arcs (see Figure 3c), with a median runtime of 8.1% of the
baseline. As expected, however, its performance in terms of quality is suboptimal. As shown in Figure 3b, the
Euclidean approach has the largest quality gap among all algorithms, with a median value of 18.6%. Figure 3b
demonstrates that all combinations of arc sampling strategies and imputation methods improve the quality gap
compared to the Euclidean method. In the worst-case scenario, the Rnd+KNN method (random sampling with k-
NN imputation) has a median quality gap of 7.5%, while the best results are achieved by the Alpha+LinReg method
(α-nearness sampling strategy with linear regression imputation), with a median quality gap of 5.1%. These two
cases respectively sampled a median of 4.7% and 5.3% of the entire travel time matrix. In terms of runtime, Figure
3a highlights that Rnd+KNN and Alpha+LinReg require a median of 28.6% and 45.9% of the runtime compared to
the case where the complete travel time matrix is retrieved.

3

(a) Algorithm runtimes relative to the baseline. (b) Algorithm quality gaps.

(c) Number of arcs sampled as a ratio of total possible arcs.

Figure 3: Comparison of algorithms based on (a) runtime, (b) quality gap, and (c) number of arcs sampled.

4 CONCLUSIONS

This study demonstrates that making strategic API calls can reduce costs and processing time while achieving near-
optimal TSP solutions. We developed a data-driven framework that operates without the need for pretraining and
can be applied in near real-time. Instead of retrieving the travel times for all pairs of stops, the framework selec-
tively retrieves travel times only for the pairs of stops that are more likely to be visited consecutively in the optimal
TSP solution. The baseline for comparison is the case where the full travel time matrix is retrieved, providing the
optimal TSP solution. The proposed framework reduces the number of retrieved travel times to a median of 5.3%
of the total matrix. This comes with a median quality gap of 5.1% and requires a median of 45.9% of the runtime
compared to the baseline.

REFERENCES

Google. (2025). Author. Retrieved from https://developers.google.com/maps/documentation/distance-matrix/
usage-and-billing?_gl=1%2A1lhccji%2A_up%2AMQ..%2A_ga%2ANTUyNjg0OTcyLjE3MzcyMzA1ODk.%2A_ga
_NRWSTWS78N%2AMTczNzIzMDU4OS4xLjEuMTczNzIzMDU5NS4wLjAuMA..

Held, M., & Karp, R. M. (1970). The traveling-salesman problem and minimum spanning trees. Operations Research, 18. doi:
10.1287/opre.18.6.1138

Helsgaun, K. (2000, 10). An effective implementation of the lin–kernighan traveling salesman heuristic. European Journal of
Operational Research, 126, 106-130. doi: 10.1016/S0377-2217(99)00284-2

Mapbox. (2025). Author. Retrieved from https://docs.mapbox.com/api/navigation/matrix/

Merchán, D., Arora, J., Pachon, J., Konduri, K., Winkenbach, M., Parks, S., . . . Merchán, M. (2022). Amazon last mile routing
research challenge: Data set. Transportation Science. doi: 10.1287/trsc.2022.1173

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay, E. (2011). Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Perron, L., & Furnon, V. (2023). Or-tools. Retrieved from https://developers.google.com/optimization

4

https://developers.google.com/maps/documentation/distance-matrix/usage-and-billing?_gl=1%2A1lhccji%2A_up%2AMQ..%2A_ga%2ANTUyNjg0OTcyLjE3MzcyMzA1ODk.%2A_ga_NRWSTWS78N%2AMTczNzIzMDU4OS4xLjEuMTczNzIzMDU5NS4wLjAuMA..
https://developers.google.com/maps/documentation/distance-matrix/usage-and-billing?_gl=1%2A1lhccji%2A_up%2AMQ..%2A_ga%2ANTUyNjg0OTcyLjE3MzcyMzA1ODk.%2A_ga_NRWSTWS78N%2AMTczNzIzMDU4OS4xLjEuMTczNzIzMDU5NS4wLjAuMA..
https://developers.google.com/maps/documentation/distance-matrix/usage-and-billing?_gl=1%2A1lhccji%2A_up%2AMQ..%2A_ga%2ANTUyNjg0OTcyLjE3MzcyMzA1ODk.%2A_ga_NRWSTWS78N%2AMTczNzIzMDU4OS4xLjEuMTczNzIzMDU5NS4wLjAuMA..
https://docs.mapbox.com/api/navigation/matrix/
https://developers.google.com/optimization

	Introduction
	Methodology
	Results and discussion
	Conclusions

