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1 Introduction

The last two decades have seen rapid development of the e-commerce business. According to the

US Census Bureau, total e-commerce sales for 2023 were more than a trillion dollars, up 7.6%

from 2022. Optimization of e-commerce merchandise delivery logistics is increasingly crucial to

improving profits and customer experience. Given the large number of packages that need to be

delivered in a timely and cost-effective manner to individual e-commerce customers, even small

improvements in delivery solution strategies could have a significant bottom-line impact.

Last-mile merchandise are typically delivered using trucks, each operating in a predefined

urban, suburban, or rural region. With recent technological developments in unmanned aerial

vehicles (“drones”), researchers have proposed new last mile delivery schemes, in which delivery

trucks are paired with drones to assist with package delivery. Murray and Chu (2015) defined a

mathematical formulation for the flying sidekick traveling salesman problems (FSTSP) for this

set-up. Many studies have focused on variations of the FSTSP setup. In particular, Agatz et al.

(2018) defined and studied the traveling salesman problem with drones (TSP-D), where, for a

single truck and a single drone, delivery assignment and vehicle routing decisions are jointly

optimized. This modeling strategy differs from the arc-based modeling approach commonly used

in FSTSP, subdividing the entire truck-and-drone tour into segments called operations.

2 The Problem

We consider a system of one truck and one drone to deliver packages to customers in minimum

total travel time. Both vehicles begin at a depot with the drone resting on top of the truck and

packages loaded in the truck. Each delivery location corresponds to a single package. If multiple

customers share a location or if a single customer has multiple deliveries, then we redefine the set

of packages as a single package per delivery location. The truck driver can park at the delivery

locations to deliver packages & the drone can fly to serve other locations. The drone can take off

and land on top of the truck at any time, even when the truck is in motion. This feature helps

the drone save energy and time. The drone visits at most one delivery location in each operation.
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To estimate drone travel times, delivery logistics optimization studies simplify drone trajectory

details. Integrating the complexities of the physics-based modeling of drone trajectories (Schmidt

and Fügenschuh, 2023) into the TSP-D model can lead to a more accurate but complicated model.

However, it is unclear to what extent such integration could provide practical benefits. In this

paper, we show that the prevalent simplifications of drone flight physics made to enable integrating

truck and drone operations in parcel delivery service planning can lead to operational plans that

can be highly suboptimal and often infeasible. We introduce a new two-stage optimization to

address these limitations and improve the quality of the solution while ensuring the feasibility of

the truck and drone travel routes. Our modeling approach allows planning for drone trajectories

in which the drone can take off from or land on the truck anywhere along the truck path. In this

regard, we expand the original concept of drone “operation” as defined by Agatz et al. (2018).

As shown in previous studies, the base models for the integrated planning of truck and drone

routing logistics is a difficult combinatorial optimization problem, even when simplifying the drone

physics considerations. Therefore, a naive direct inclusion of accurate drone travel trajectory

calculations into the truck-and-drone route planning model is unlikely to be computationally

tractable for realistic problem sizes. We propose a new physics-aware truck and drone delivery

logistics planning model and an original heuristic solution approach that combines optimization

and supervised machine learning to generate high-quality solutions in limited computational

runtimes for realistically sized problem instances. In addition, we incorporate restricted airspace

(RAS) constraints in drone trajectories for additional realism in our computational experiments.

3 Model Formulation

The tour planning problem decomposes into two sets of decisions. The upper level assigns

delivery nodes to the two vehicles (truck and drone) and decides the sequence of visits to the

delivery nodes for each vehicle. The lower level decides the drone trajectory for each flight. The

objective is to minimize the total truck-and-drone tour time. We break ties by minimizing drone

energy costs as a secondary objective. The upper-level non-linear optimization formulation is an

extension of the model by Agatz et al. (2018). Because the operation time is a variable instead of

a constant, we have a non-linear term in the objective function. Upper-level model also includes

all constraints in the Agatz et al. (2018) model, ensuring that all delivery nodes are visited,

each operation must cover at least one delivery node that is not in other operations, the flow

balance of the truck-and-drone tour is maintained, and the tour starts and ends at the depot.

The lower-level model builds on the drone trajectory planning model of Schmidt and Fügenschuh

(2023). By coordinating with the truck’s travel path and velocity when taking off and landing,

the lower-level model optimizes the drone trajectory. It has the following constraints.

• Drone trajectories obey rules of physics for displacement, velocity & acceleration updates.

• Drone flying altitude is in one of the discretized altitude bands stipulated by local regulation.

• The drone speed and acceleration levels are within technical specifications at all times.

• The drone cannot fly into any of the restricted airspaces as per the local regulations.

• An operation ends when both the truck and the drone finish their operation assignments.

• When resting on the truck, location and speed of the drone are the same as that of the truck.

• Drone deliveries can occur only if the drone visits a customer node and reaches zero speed.
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• Approximations leveraging l∞ and l1 norms are used to linearize l2 norms of displacement,

velocity & acceleration.

4 Solution Approach

If the time and drone energy consumption for each operation is known beforehand, then one can

directly solve the TSP-D model by Agatz et al. (2018). However, an accurate estimation of the

drone travel time requires extensive computations to solve the lower-level formulation for each

candidate operation, and the number of such operations grows exponentially with the instance

size, making it unrealistic to perform a complete enumeration for practically sized instances.

Instead, we propose a new neural network-based approach to provide accurate estimates of

the time and drone energy consumption for each operation. Kundu et al. (2022) proposed a

polynomial time split algorithm combined with local search techniques to solve the TSP-D

problem and showed that overall approach is highly accurate and computationally scalable

to realistic problem instances. Their approach relies on Euclidean travel distances, which we

propose to replace with a machine-learning trained neural network (NN) predictor. Our NN

model outputs a drone trajectory time estimate given a set of three node locations: a start node,

a delivery node, and an end node, as well as the coordinates of the corners of restricted airspaces.

Once the aforementioned modified heuristic generates the optimal set of operations, the detailed

lower-level model provides a feasible 4D (x, y, z, and time) trajectory plan, drone travel time, and

drone energy consumption cost for each operation.The input layer of the NN model uses features

that represent drone travel locations within an operation, including the starting, delivery, and

ending points. Specifically, we used the x and y coordinates of each of these three locations as

features. The NN model’s output is the drone travel time for an operation. We train the NN

models on simulation-generated offline training data from a drone-only model for various (start,

delivery, end) node triplets with and without RAS regions separately before applying them.

5 Results and Conclusion

We conduct extensive computational experiments on two sets of instances to test the performance

of our approach. The first set (reported in Table 1) does not have any RAS regions, whereas

the second (not reported here due to space restrictions) considers the existence of six RAS

regions. For each set, we compare total travel time and drone energy consumption obtained by

our approach (denoted by P) with that obtained by the benchmark approach (denoted by K)

based on simplified Euclidean distance-based drone travel times. We also report results for a

third approach (denoted by MK) which uses a constant multiplicative factor (calibrated using

offline training data) to scale the Euclidean distance to estimate the drone travel time. We vary

the number of delivery nodes from 10 to 200 and the average truck travel speed, measured in km

per hour (kph), from 20 to 80. For each combination, we randomly generated 100 instances and

report the average results in Table 1. Each value in this table reports the percentage saving in

total travel time using Method P compared to Method K. To show how our approach performs in

a real-world setting, we additionally applied it to four major city centers in the U.S. for a typical

daily e-commerce delivery instance. Table 2 reports the savings in both total travel time and
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drone energy consumption, achieved by our Method P compared to Method K and Method MK.

In all cases, we report the actual travel times and the actual values of drone energy consumption

calculated using the trajectory model based on physics.

Speed
Nodes

10 20 50 75 100 175 250

20 0.20% 0.48% 0.64% 1.07% 1.85% 4.11% 7.58%

30 -0.20% 1.41% 3.92% 5.71% 8.40% 15.15% 21.88%

40 2.19% 4.10% 11.16% 15.61% 19.10% 27.58% 34.28%

50 3.94% 9.86% 18.40% 23.35% 27.16% 34.89% 40.66%

60 5.89% 10.91% 19.68% 24.41% 28.30% 34.97% 40.07%

70 5.39% 9.48% 15.54% 18.99% 21.91% 27.12% 31.63%

80 3.79% 7.54% 13.67% 15.57% 18.24% 24.08% 28.32%

Table 1: Total Travel Time Reduction in Synthetic Instances: Method P vs. Method K

City Center TTT (vs. K) TTT (vs. MK) DEC (vs. K) DEC (vs. MK)

Los Angeles 4.38% 3.83% 14.21% 13.72%
Boston 3.72% 2.53% 13.73% 12.72%
Chicago 3.69% 2.41% 14.01% 12.85%
Philadelphia 3.15% 2.51% 11.58% 10.51%

Table 2: Total Travel Time (TTT) and Drone Energy Consumption (DEC) Saving for Method P

Method P consistently outperforms Method K in all but one of the 49 combinations in Table

1, with an average TTT savings of 15% (range 0%-41%). Method K also provides average DEC

savings of 30% (range 2%-58%) [not shown here]. The relative benefits of Method P increase

significantly with the number of customer nodes and also with the average truck speeds. For

the four US city centers, Table 2 shows that Method K leads to TTT savings of 3.15%-4.38%

compared to Method K (and 2.41%-3.83% compared to Method MK) and DEC savings of

11.58%-14.21% compared to Method K (and 10.51%-13.72% compared to Method MK). All

models are solved in under a minute of runtime consistent with practical requirements. Thus,

our neural network-based solution approach solves our physics-aware truck-and-drone delivery

logistics planning model efficiently providing substantial and consistent travel time savings.
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