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1    INTRODUCTION AND BACKGROUND 

In North America, urban mobility has been dominated by private vehicles. However, the current approach is to 

shift from vehicles to more sustainable transportation modes, such as cycling. Bike-Sharing Systems (BSSs) can help 

encourage a shift toward cycling. BSSs offer convenience as the primary motivator for cycling through simple payment 

options, straightforward membership processes, and easy station access (1). Station-based BSSs provide ready-to-use 

bicycles for users, and they can unlock a bicycle at a station and return it to another (or the same) station. A key factor in 

implementing station-based BSSs is the location of the stations (2). Therefore, different optimization models have been 

developed to optimize the stations’ locations, and some of the recent studies are summarized in Table 1. 

Table 1 – A summary of the studies on BSS station location optimization 

Reference 
Optimization 

method 
Objective function Scale (network-time) Equality 

Dynamic 

demand 

Sun et al. (3) MILP Maximize the user demand 10 locations-2 hours - - 

Jin et al. (4) Ant colony Minimize circuit among sites 5 districts-NA - - 

Frade and 

Ribeiro (2) 
XPRESS Maximize demand coverage 29 zones - a day - - 

Mix et al. (5) 
Gurobi 

Optimizer 
Maximize demand covering 14 municipalities - a month - MLR 

Nikiforiadis 

et al. (6) 

Weighted 

QCP 

Maximize the demand; Maximize 

the need for redistribution 

193 candidate stations-

4months 
- - 

Caggiani et 

al. (7) 

Genetic 

algorithm 
Minimise inequalities 3.0km×3.6km-NA 

Equal access 

to 3 bus lines 
- 

As can be perceived, most of the previous studies considered bike-sharing demand static in location optimization. 

However, the location of stations and bike-sharing demand are intertwined, and the location of stations can influence the 

demand. Only Mix et al. (5) applied a dynamic demand model in the optimization process, while the dynamic demand 

prediction model was generated by multiple linear regression, which is generally defined as an inaccurate prediction model 

due to its predetermined structure (8). Further, all the presented studies (except (6)) considered a single objective function 

or applied converted a single objective optimization algorithm (i.e., Weighted QCP) to solve the problem. Hence, an 

application of multi-objective powerful multi-objective optimization problems has not been considered. Further, the 

dimension of previous studies was limited to 193 candidate stations and maximizing the demand for 4 months. As another 

research gap, equality was only considered in (7), which was defined as equal access to three bus lines, and equality has 

not been considered in station location optimization at a city scale. To address these limitations, the novelties and 

contributions of this study are: (a) Develop an accurate demand prediction model, which dynamically predicts the demand 

in the station location optimization process; (b) Develop a multi-objective framework to simultaneously maximize bike-

sharing use, maximize equality, and minimize implementation cost; (c) Adjusting Reference Vector Guided Evolutionary 

Algorithm (RVEA) to solve multi-objective BSS location optimization; and (d) Introduce a hybrid machine learning-

optimization model that optimizes station locations considering dynamic demand and many objective functions. 

2    METHODOLOGY 

2.1  Demand prediction 
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Various factors can influence the demand for BSSs, including the availability of stations, built environment and 

land use, availability of bikeways, access to public transit, weather conditions, and socio-demographics of dwellers (1). 

Hence, we apply a data fusion approach to merge nine different datasets to include these vital variables in the demand 

prediction model. The applied data sources include bike-sharing trips (Bixi) in the recent three years, Canada proximity 

measure data, Walk Score, Open Street Map, deprivation index dataset, Canada Census data, dissemination area 

information, the Canadian Bikeway Comfort and Safety (Can-BICS), and Canada Weather Stats. Independent variables 

include the week of the year, day type (categorized as weekday peak hours, weekday off-peak hours, and weekend hours), 

Walk Score, cycling distance to the city center, and the number of Bixi dock stations within the dissemination area. 

Additional factors encompass proximity to parks, access to transit stations, the CanBICs index (a measure of nearby 

bikeways quality and quantity), material and social deprivation indices, household average income, the percentage of 

French-speaking residents, educational attainment levels, employment rate, population density, total population, and year 

(noted as 2022, 2023, or 2024). Lastly, environmental conditions include temperature variation, average temperature, 

average precipitation, and age demographics, specifically the percentages of residents aged below 15 and over 64.  

The dependent variable is the number of trips per hour in each dissemination area. A dissemination area is a 

standard geographic unit in Canada, defined by having at least one neighboring dissemination block, making it the smallest 

standard geographic unit in Canada (9). To predict the hourly demand, a powerful machine learning technique, called Light 

Gradient Boosting Machine (LightGBM), is employed, and it is tuned by Optuna and k-fold cross-validation. 

2.2  Optimization Model 

The case study of this investigation is Montreal, Canada, and the current BSS in Montreal (Bixi) includes over 

900 stations. There are 787 dissemination areas in the case study, and the model aims to find the optimal number of new 

stations added to each dissemination area. The model includes three objective functions: maximize bike-sharing use, 

maximize equality, and minimize implementation cost. The optimization model encompasses 787 decision variables, 

representing the added stations to each dissemination area. During optimization iterations, new stations are allocated to 

dissemination areas, and new demand for 22 weeks (early April to early September) is predicted using LightGBM.  

The optimization algorithm iteratively maximizes the overall demand. In other words, LightGBM runs inside the 

optimization algorithm (RVEA) to predict the demand for each solution vector. At the same time, the model maximizes 

the equality in the network. The equality index is defined as the standard deviation of the number of stations per population 

in different dissemination areas, which should be minimized. The implementation cost is defined as the number of new 

stations added to the city, which should be minimized. RVEA is applied to solve the optimization problem. RVEA is a 

powerful optimization algorithm for multi-objective optimization problems, and it outperforms many multi-objective 

optimization algorithms such as NSGA-III, GrEA, MOEA/DD, MOEA/D PBI, and KnEA in terms of finding the optimal 

solution (10). Although RVEA is a powerful method, its application to transportation problems has been limited. 

3    RESULTS AND DISCUSSIONS 

3.1  Demand prediction 

The demand prediction model could predict the hourly number of trips in dissemination areas with an MAE of 

0.383 trips/hour and an R2 of 0.971 for testing data. Therefore, LightGBM performed well in predicting the demand, and 

its application in the optimization process can improve the model’s performance. 
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3.2  Optimal solutions 

The results of the optimization model and the number of trips and equality index in the current situation are 

presented in Table 2. In the current situation, the network includes 977 stations, and the optimization model finds the 

number and location of new stations added to the model. As shown, the model offers ten non-dominated optimal solutions 

by adding 4 to 290 stations to the network. To evaluate the effectiveness of the model, a random allocation model is 

developed, assigning new stations (equal to the number of added stations in optimal solutions) to the network, and its 

outcomes are also presented in Table 2. In optimal solutions, by increasing the number of stations, the number of trips in 

the network is increased.  

Further, all optimal solutions improve the equality index of the current situation (i.e., reduce the standard deviation 

of the number of stations per population in different dissemination areas). In the optimal solutions with more added stations, 

the improvement in the equality index is greater because we need more added stations to ameliorate the unequal distribution 

of BSS stations and it may be impossible to address this issue with a few new stations. On the other hand, the random 

allocation model provides us with new solutions, significantly worse than the current situation in terms of the equality 

index. Moreover, the number of trips in the random allocation model is less than their corresponding optimal solutions. 

Table 2 – The current situation, non-dominated solutions, and randomly allocation models 

ID 
Added 

stations 
Number of trips 

Equality 

index ×  107 
ID 

Added 

stations 
Number of trips 

Equality 

index ×  107 

Current 0 9853927 489529     

 Optimal solutions  Randomly allocation 

ID1 4 9937210 489529 Rand1 4 9864850 489529 

ID2 10 10022900 489529 Rand2 10 9868774 489529 

ID3 13 10045700 489529 Rand3 13 9873256 489576 

ID4 19 10073400 489528 Rand4 19 9908014 489528 

ID5 70 10270100 489524 Rand5 70 10042673 722155 

ID6 78 10302900 489523 Rand6 78 9974865 530811 

ID7 86 10326700 489523 Rand7 86 10065608 722162 

ID8 89 10309200 489522 Rand8 89 10098447 750707 

ID9 284 10861100 489519 Rand9 284 10578648 722173 

ID10 290 10876100 489519 Rand10 290 10563738 531238 

The improvement of different solutions in terms of increasing the number of trips per added station is shown in 

Figure 1. As can be perceived, the improvement rate for the random allocation model is between 1200 and 2600 added 

trips per new station. The improvement rate of the optimization model is much better than the random allocation model. 

Since the network includes 977 stations and is saturated in some regions, the number of trips per added station is expected 

to be less than the number of trips per available station. However, ID1 to 4 found optimal locations for new stations with 

more trips per station than the current rate in the network. From ID 5 to 10, the number of trips per new station is below 

the current rate, but they increase the overall number of trips. Moreover, they allocate new stations where the inequality is 

minimized. 

The properties of dissemination areas selected by optimal solutions for the new stations are shown in Figure 2. As 

shown, the optimal solutions with a higher rate of trip increase (e.g., ID 1 to 4) are more likely to select dissemination areas 

near the center with higher Walk Scores. However, optimal solutions with higher equality improvement (e.g., ID 9 and 10) 

allocate more stations to locations with higher distance to the center and lower Walk Score because stations are currently 

more distributed in the city center and these optimal solutions ameliorate this unequal distribution. Moreover, optimal 

solutions tend to assign new stations where appropriate bikeways are available and are accessible by more people.  
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Figure 1 – The improvement of optimal solutions regarding the number of trips per station 

 

 

Figure 2 –  The characteristics of optimal dissemination areas for new stations 
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