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1    INTRODUCTION AND BACKGROUND 

Transportation is one of the major sources of GHG emissions and climate change, and it contributes to nearly 

24% of CO2 emissions around the world. To address this, a shift from car use (the dominant mode in North America) 

to more sustainable transportation modes is required (1). One of the possible approaches could be promoting bike-

sharing systems since they provide us with many advantages, such as more physical activity, reduced emissions, 

flexible mobility, reduced fuel dependency and congestion, multimodal transport connections, and financial savings 

(2). Interestingly, bike-sharing can also promote the transition to cycling. Station-based bike-sharing systems include 

many ready-to-use bicycles in different stations (docks), and passengers can pick up a bicycle at a station and return 

it at any station near their destination. These systems can promote cycling through convenience and facilities such as 

easy access to bicycles, ease of payment, and simple membership procedures (3). 

As a crucial responsibility in managing bike-sharing systems, the travel demand should be predicted, which can help 

facilitate the relocation of bicycles and optimize the location of new bike-sharing docks (4). Therefore, researchers 

have developed prediction models to predict bike-sharing demand, and some of their recent studies are summarized 

in Table 1.  

Table 1 – A summary of recent studies on bike-sharing demand prediction 
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RMSE 

(trip/h) 
R2 

Prediction 

level 

Li et al. (4) IrConv+LSTM Chicago x - - - - 2.204 4.335 - 
Adjacent 

cells 

Li et al. (4) IrConv+LSTM 
Washington, 

D.C. 
x - - - - 1.969 3.359 - 

Adjacent 

cells 

Li et al. (4) IrConv+LSTM New York x - - - - 5.776 10.814 - 
Adjacent 

cells 

Li et al. (4) IrConv+LSTM London x - - - - 3.578 6.296 - 
Adjacent 

cells 

Sathishkumar 

et al. (5) 

Gradient 

Boosting  
Seoul x - x - - 109.78 172.73 0.92 District 

Yang et al. (6) Deep learning New York x - x - - - 8.114 - Regional 

Yang et al. (6) Deep learning Chicago x - x - - - 5.268 - Regional 

Pan et al. (7) Deep LSTM 
New York City 

and Jersey City 
x - x - - - 2.712 - Station 

Hulot et al. (8) 
Gradient 

Boosting 
Montreal x - x - -  1.394 0.59 Station 

Sathishkumar 

and Cho (9) 
CUBIST Seoul x - x - - 78.45 139.64 0.95 District 

A recent review demonstrated that previous trips, weather conditions, land use, built environment, access to 

public transport, suitable cycling infrastructure, and socio-demographic variables strongly influence bike-sharing 

demand (3). However, these variables have not yet been used together to predict bike-sharing demand. The objectives 

and contributions of this study are as follows: 

• Incorporate all key variables (e.g., historical data, weather conditions, land use, built environment, 

accessibility measures, deprivation measures, cycling infrastructure, and socio-demographics) into a single 

model to achieve the highest possible accuracy in predicting bike-sharing demand. 
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• Prioritize and assess the relative impact of these variables on bike-sharing demand using an interpretable 

ensemble learning approach. 

• Capture the non-linear relationship between the key variables and bike-sharing demand. 

2    METHODS 

2.1  Data 

Data from nine different sources are fused to generate the final dataset. These sources included different 

information at the dissemination area (DA) level. A DA is a small area with at least a neighboring dissemination 

block and Canada’s smallest conventional geographic area. The population of DAs across Canada was targeted to be 

400 to 700 persons (10). The applied data sources in this study include bike-sharing trips (Bixi), Canada Census data, 

Canada proximity measure data, deprivation index dataset, walk Score, DA dataset, the Canadian Bikeway Comfort 

and Safety (Can-BICS), Open Street Map, and Canada Weather Stats. Bixi is a station-based bike-sharing system in 

Montreal, Canada (the case study of this study), and its dataset includes the start time, origin station, end time, and 

destination station of all trips. From this data, all the trips from April to October in the recent three years (i.e., 2022, 

2023, and 2024) are considered. The number of trips in the mentioned duration was over 19.6 million. For more 

information about Canadian Census data, Canada proximity measure data, deprivation index dataset, and walk Score, 

please read Naseri et al. (1). Can-BICS is a measure of cycling infrastructure indicating the weighted length of 

bikeways within a one km buffer. In this measure, the lengths of high-comfort, medium-comfort, and low-comfort 

bikeways are multiplied by 3, 2, and 1 (11). Open Street Map is applied to calculate the average cycling distance of 

Bixi docks in each DA to the Montreal city center. Canada Weather Stats (www.weatherstats.ca) is a database, which 

stores the historical weather data in Canada. 

The data is prepared at the weekly level. For example, the temperature is the average temperature of the 

week, and the temperature variation is the average temperature variation of seven days in the week. The dependent 

variable is the number of trips per hour in each DA. To calculate this, the number of trips during weekday peak hours, 

weekday off-peak hours, and weekend hours are counted for each week, and these values are divided by the respective 

number of hours in each period (30, 90, and 48 hours). The generated dataset contained 30 variables. The correlation 

between variables is tested using the Pearson correlation coefficient. Seven variables are excluded from the dataset 

due to high correlation, and the final dataset includes 23 variables: week (represents 𝑖th week of the year), day type 

(weekday peak hours, weekday off-peak hours, and weekend hours), Walk Score, cycling distance to the city center, 

number of stations (Bixi docks) in the DA, CanBICs, proximity to parks, proximity to transit stations, material 

deprivation index, social deprivation index, the average income of households, percentage of French speakers, the 

percentage of people whose highest level of education is a high school diploma, the percentage of people whose 

highest level of education is postsecondary certificate below bachelor, employment rate, population density, 

population, year (2022, 2023, or 2024), temperature variation, average temperature, average precipitation, percentage 

of people aged below 15, and percentage of people aged over 64. The final dataset includes 23 independent variables 

and 95,874 data observations. 

2.2  Modeling 

This study proposes an accurate model to predict bike-sharing demand and identify the determinants of using 

the bike-sharing system. To this end, the Light Gradient Boosting Machine (LightGBM) is used for modeling. 

LightGBM is a new ensemble learning technique developed by Microsoft. This method is super-fast and appropriate 

for big data analyses since it supports parallel learning using lower memory usage (12). Moreover, LightGBM 

outperformed many other machine learning techniques and statistical analyses when comparing prediction accuracy 

and computational cost (e.g., (1).). In the modeling, 80% of the data is considered training data and the remaining 

20% is used as testing data to evaluate the prediction power of the model. Further, k-fold cross-validation (considering 

k=5) and Optuna were simultaneously used to tune the hyperparameters of LightGBM. The performance of the model 

is evaluated using root mean square error, mean absolute error (MAE), the coefficient of determination (R2), mean 

absolute percentage error (MAPE), and the percentage of data observations with an error of less than 30% (A30). For 

interpreting the results of LightGBM, SHapley Additive exPlanations (SHAP) and Partial Dependence Plots 

(PDP) are employed. For more details about these methods, please read Naseri et al. (13). 

3    RESULTS AND DISCUSSIONS 

The performance of the model on testing and five-fold validation data and the testing data error histogram 

are presented in Figure 1. As shown, the performance of testing data is approximately the average performance of 

validation datasets, indicating that the model performs consistently across different datasets. This trend confirms that 

the model generalizes well, and its predictive power is stable. The final model predicts the testing data with an RMSE 

of 0.769 trip/hour, an MAE of 0.383 trip/hour, and an R2 of 0.971. These values demonstrate the superior performance 

of the proposed model compared to the literature (please see Table 1). In this table, the minimum RMSE, minimum 
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MAE, and maximum R2 are 1.394 trip/hour, 1.969 trip/hour, and 0.95. Hence, it can be postulated that adding land 

use, built environment, accessibility measures, deprivation measures, cycling infrastructure, and socio-demographic 

variables to the conventional bike-sharing demand prediction models can significantly improve their predictive 

performance. Further, the error histogram indicates that all the testing data points are located near the equity line 

suggesting most predictions align closely with the actual outcomes. 

  
Figure 1 – (a): the model’s performance (b): error histogram of testing data 

Then, the tuned LightGBM model is synchronized with SHAP to examine the relative impact of independent 

variables on bike-sharing demand and the outcomes are presented in Figure 2. 

 
Figure 2 – The relative influence (SHAPLEY value) of variables on bike-sharing demand 

As shown, the Walk Score has the strongest influence on bike-sharing demand, which has been overlooked 

in previous studies. Distance to the center can indirectly represent the built environment, and it is the third top 

variable. CanBICS and the percentage of people aged over 65 are the sixth and ninth top variables, representing the 

importance of infrastructure and socio-demographics in bike-sharing demand prediction models. Hence, adding land 

use, built environment, cycling infrastructure, and socio-demographic variables to conventional models is essential. 

Subsequently, PDP is applied to capture the non-linear relationship between independent variables and bike-

sharing demand, and the outcomes are presented in Figure 3. In this figure, only the PDP of some variables (top 6) 

are presented due to the page count limitation, but the full results and discussions will be presented at the conference. 

According to the results, the bike-sharing demand is maximum in DAs with a walk score of over 95, and hence, 

walking complements bike-sharing trips in Montreal. Increasing the number of stations up to five maximizes the 

number of trips, and after this threshold, the increase rate is not significant. The highest demand is in regions closer 

to the city center (with a cycling distance of less than 5.5 km). Bike-sharing demand is much lower in weekday peak 

hours than in weekday off-peak hours and weekends. In weeks with an average temperature of over 15°C, in 

neighborhoods with more nearby bikeways, and weeks 25 to 39 (June to September), Bixi use is likely to reach its 

highest level. In DAs with the lowest elderly (over 65) and children (under 15) population percentage, the demand is 
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expected to be higher. In DAs with minimum accessibility to parks, minimum percentage of French speakers, and 

maximum density, the likelihood of bike-sharing use is much higher. 

 

 
Figure 3 – The direction influence of top variables on bike-sharing demand 
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