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Introduction

Emerging passively collected mobility (PCM) datasets—such as global positioning system traces, call detail records,
and transit smart card transactions—offer an unprecedented opportunity to observe and understand mobility behavior
in remarkable detail. These datasets have revolutionized our ability to reconstruct individual daily mobility patterns,
but they have also sparked growing concerns over data privacy. In many cases, the use of such detailed data is re-
stricted, necessitating the use of aggregated representations of travel demand. One widely used format for this purpose
is the time-dependent origin-destination (TD-OD) matrix, which summarizes mobility as the total volume of trips
between pairs of locations at different times of the day. Thanks to their simple structure, TD-OD matrices have be-
come a cornerstone of transport planning and policymaking. However, their coarse-grained nature presents significant
limitations. They fail to capture complex travel behaviors such as trip-chaining or interdependencies between trips.
Moreover, the absence of sociodemographic details (e.g., age, gender) and trip information (e.g., trip-chain length,
trip purposes) severely limits their application in agent-based models, which require richer data to simulate individual
decision-making processes effectively.

To address the lack of sociodemographic and trip information in PCM data, we utilize household travel survey (HTS)
data as a complementary source. Specifically, we propose a novel two-stage data fusion approach that leverages
the TD-OD matrix from PCM data to generate comprehensive activity schedules for agents, while transferring trip
information and sociodemographics from HTS data. In the first stage, we employ a cluster-based method (Vo et al.,
2025) to generate a fused distribution that integrates the TD-OD matrix with sociodemographics and trip information.
The second stage uses the fused distribution from the first stage to generate sociodemographics, trip information, and
the spatiotemporal characteristics of activity schedules. This process leverages modified Markov models to improve
the generation of activity schedules.

A significant limitation of conventional approaches (e.g., Anda et al., 2021; Ballis and Dimitriou, 2020; Ye et al.,
2024) is their primary focus on the spatiotemporal aspects of activity schedules, often neglecting essential trip infor-
mation such as trip chain length and trip purposes. This shortcoming frequently leads to the generation of numerous
infeasible trip attribute combinations. Our proposed approach overcomes this limitation by integrating these critical
trip attributes while preserving the distributions of sociodemographics and trip information from HTS data, as well as
the spatiotemporal characteristics (i.e., TD-OD demands) from PCM data, through an effective data fusion process.

Methodology

Problem statement

Every agent, defined by their sociodemographic attributes X (e.g., age, gender), follows a daily activity schedule
characterized by a sequence of activity purposes ¥ = (..., Y¥,...), activity locations Z = (..., Z,...), start times S =
(..., Sk ...), and end times E = (..., Ey,...), where k denotes the order of trips in the activity chain. For individual
trips, let Z,7Z.T,and T represent the origin, destination, departure time, and arrival time, respectively. The task is to
harmonize two datasets: The HTS data, capturing the joint distribution P(X = x,Y = y,Z = 2,S = s, E = €)ps, Which
provides rich details about sociodemographics and trip information but suffers from low spatiotemporal heterogeneity
(Vo et al., 2025). The PCM data in the TD-OD matrix form, describing P(Z = 72Z2=3T =1T = f)pcm, which is
highly reliable for spatiotemporal patterns but lacks critical contextual information. The data fusion problem aims to



estimate a unified joint distribution P(X = x,Y = y,Z = z,§ = s, E = e)g;s, combining the strengths of both datasets.
For simplicity, we write these distributions as p(x, y, z, 5, €)ns for HTS data and p(Z, Z, 7, f)pecm for PCM data.

Preliminary data fusion approach

A conventional method for addressing the data fusion problem involves a preliminary two-stage approach, which has
been widely adopted in various forms in existing literature (e.g., Anda et al., 2021; Ballis and Dimitriou, 2020; Ye et
al., 2024). The first step in solving the data fusion problem is to harmonize the spatiotemporal information between the
datasets by generating p(z, S, €)pem from p(Z, Z, 7, f)pem. To streamline the mathematical representation, we can express
p(Z,%,t,f) from PCM data in terms of trip chain order to make it consistent with p(zx_1, €x_1, 2k, sx) in HTS data. This
generation process can be effectively modeled using the following Markov process:
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The second step involves the transfer of spatiotemporal information (z, s, e¢) between the datasets and enables the
imputation of (x,y) from HTS data into (z, s, ¢) in PCM data. This process is expressed as:
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p(Z9 S’ e’ C)pcm (2)
where c represents a spatiotemporal cluster that maps (z, s, e) across both datasets. In Eq. (2), p(x,y, ¢)ns and p(z, s, €, ¢)pem
are derived from HTS and PCM data, respectively, capturing the strengths of each dataset.

The preliminary two-stage approach has the following challenges:

Feasibility: Existing methods (e.g., Anda et al., 2021; Ballis and Dimitriou, 2020; Ye et al., 2024) that adopt the
generation process described in Eq. (1) often produce a significant number of infeasible combinations (z, s,e). This
issue arises due to the sequential nature of the process and the lack of critical trip-chain information—such as trip chain
length and trip purposes—when generating the next activity location and arrival time (zx, Sklzk-1, €x—1), as well as the
end time at the next location (ex|zx, Si).

Distribution preservation: The data fusion process described in Eq. (2) relies on different assumptions about the
distributions preserved in the fused output. Specifically, setting p(c)rus = p(C)nis €nsures that p(z, s, €)rus = p(2, S, €)pem>
which also preserves p(zi_1, €x—1, k> Si)fus = P(Zk—1> k-1, Zk» Sk)pem at an aggregate level. Conversely, setting p(¢)fys =
P(C)pem results in p(x, Y)fus = p(X, Y)ns. However, ideally, the fused distribution should simultaneously maintain, to
some extent, both p(x, Y)fus = p(X, Vs a0d p(Zk-1, €k—15 Zks Sktus = P(Zk-15> k=15 Zks Sk)pem-

Spatiotemporal granularity: The data fusion process described in Eq. (2) relies on assumptions about the granularity
of clusters ¢ to bridge (z, s, e) from the PCM data with (x,y) from the HTS data. However, the number of possible
combinations of (z, s, €) in the PCM data is significantly higher than in the HTS data, making this alignment challeng-
ing. Deep generative models offer a potential solution by learning a latent space that functions similarly to clusters
¢, enabling the connection between (z, s, ¢) in the PCM data and (x, y) in the HTS data. However, these models fail
to ensure the preservation of distributions, which is critical for maintaining the integrity of both datasets in the fused
result.

Proposed data fusion approach

We modify the activity generation process in Eq. (1) as follows:
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The advantage of the generation process in Eq. (3) over that in Eq. (1) lies in its incorporation of sociodemographics
and trip-chain information when determining the next activity location and start time (zx, Sx|x, y, zx—1, ex—1) as well as
the end time (ex|x, y, zx, Sx). By utilizing this additional contextual information, the process addresses the feasibility
challenge by significantly reducing the number of possible spatiotemporal combinations for the next activity location,
along with its associated start and end times.

However, the generation process in Eq. (1) depends on p(x, y, Zk-1, €k-1, Zk» Sk)fus- Since (Z,Z, 1, f) and (zx—1, €x—1, k> Sk)
in Eq. (3) are interchangeable, we reformulate the data fusion problem as finding p(x, y, 7, %, f, 7, ¢)ss such that:

min Z Z Z DJS (p(-xs )’» C)hts“p(x’ ys C)fus) (4)
xel'(X) yel'(Y) cel'(C)
subject to
p(zv Zs t_’ fv c)fus = P(Z»Z, f» fa c)pcm (5)
p(x,y,Z, Z, t_’ f, C)fus >0 (6)

where ¢ is now a cluster of (Z,Z, 7, f) at the trip level instead of (z, s, e) at the activity-schedule level, and I'(.) is the set
of possible value combinations for the given attributes. Note that we have p(z,Z, %, Hws = p(Z, 2,1, I, C)us @S (2,2, 1, 1)
encompasses all information about c.

We exclude (Z, Z, 7, 7) from the objective function in Eq. (4) due to the low spatiotemporal heterogeneity of the HTS data.
Instead, a clustering-based approximation that leverages c in place of (Z, Z, 7, f) is necessary to align both datasets to a
consistent spatiotemporal granularity for effective information transfer. The objective function in Eq. (4) minimizes the
Jensen-Shannon (JS) divergence between the fused joint distribution of (x, y, ¢) and that of the HTS data. Constraint (5)
indicates that the fused distribution of (Z,Z,7,7) is the same as of the PCM data. Constraint (6) ensures that the
probability mass on each attribute combination is non-negative.

The data fusion process outlined in Eqs. (4)—(6) addresses the challenge of distribution preservation, ensuring the
retention of p(Z,Z, 7, Dpem and p(x, y)ns. However, it still faces the spatiotemporal-granularity challenge, particularly
regarding the assumptions made when creating clusters. In addition, the data fusion process introduces a new chal-
lenge related to high dimensionality—the combinatorial explosion of possible combinations for (x, y,Z,Z,, , ¢) across
the HTS and PCM datasets. Solving the optimization problem directly is computationally infeasible due to the sheer
number of decision variables, which scales as O(|L'(X)|x [T (Y)|x [T(2)|x |T(Z)| x |T(T)|x [T(T)|), where [T'(-)| denotes the
size of the corresponding attribute’s domain. To address this issue, we propose an approximate but tractable reformu-
lation to estimate p(x,y,Z,Z,f, I, C)fs. This reformulation is equivalent to the original problem defined in Egs. (4)—(6),
ensuring that the high-dimensional optimization problem is reduced to multiple low-dimensional subproblems. These
subproblems can be efficiently solved, making the approach computationally feasible while preserving the fidelity of
the original optimization goals.

Reformulated equivalent data fusion problem

We now reformulate the optimization problem described in Egs. (4)—(6) to deal with the high-dimensionality challenge.
We can express the fused joint distribution p(x, y,Z, Z, f, D)y as:

p('x’ y7 Z’ 29 t_’ f)fus = p('x’ ylz’ 29 f’ f)fusp(zv 27 fa f)fus- (7)
We also have p(Z,Z, 1, Dus = p(Z, 2, 1, T, Opus a8 (Z, Z, £, F) includes all information about c. Thus, Eq. (7) can be rewritten:
p(x’ Vs zZ Z’ f’ f’ C)fus = P(X, ylz, Za f, f, C)fusp(zs Z, t_s f’ C)fus- (8)

Similar to the original problem given in Egs. (4)-(6), we need to rely on c instead of (z,Z,7,7) in the conditional
distribution to ensure the same granularity of both datasets for information transfer:
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We also hypothesize that p(Z,Z, 7, f)pem is more reliable than p(Z,Z, 7, Dns. Thus, p(Z,Z, 7,7, ¢)pem must be also more
reliable. We rewrite the joint distribution in Eq. (9) as

o~ X, ¥, C)fus M =~
P06y, 25 F, s~ PP 8 2 2 F e (10)
p(c)pcm

Similar to the objective function in Eq. (4), we would like to minimize the probabilistic distance between p(x, y, ¢)gys
and p(x,y,c)ns but we cannot impose p(x,y,C)us = p(X,¥,C)ns in Eq. (10). Directly replacing p(x,y, ¢)fs With
P(x,y, O can distort p(Z,Z, 7,7, ¢)pem and causes p(Z,Z, 1,7, Ops # P(Z, %, 1,7, C)pem. To address this issue, p(x,y, ©)fus
can be obtained as the solution to the following optimization problem Py fusion:

min >N Dis (p(x,, Orusllp(x, ¥, ) (11)
xel'(X) yeIl'(Y) ceI'(C)
subject to
D> Py, O = P(©pem (12)
xe['(X) yeI'(Y)
P(X,y, C)fus > 0. (13)

The objective function in Eq. (11) is the JS divergence between p(x, y, )5 and that from the HTS data conditional on
P(C)pem- The conditional constraint (12) preserves the distribution of ¢ from the PCM data. The reformulated problem
can be decomposed into O(I'(C)|) subproblems—one for each cluster, each of which has O([T'(X)| x |[['(Y)|) decision
variables. For more details on the properties of the data fusion problem and strategies for creating effective clusters,
readers are referred to Vo et al., 2025.

What’s next?

We will conduct two experiments to evaluate the proposed framework: (i) validation of its effectiveness, and (ii)
demonstration of its practical application through a real-world case study. For these experiments, we will utilize a
TD-OD matrix synthesized from HTS data and various PCM data sources, including smart card and taxi data collected
in Singapore in July 2022. In the validation experiment, we use the “full HTS data” as the ground truth. From this
dataset, we sample 5% of the observations to create the “hypothetical HTS data” and use all trips to create TD-OD
matrices obtained from “hypothetical PCM data.” The purpose of this validation step is to assess how effectively
the proposed framework can integrate the hypothetical HTS data and the hypothetical TD-OD matrix to reconstruct
activity schedules and sociodemographics that align with the full HTS data (i.e., the ground truth). In the case study,
we will apply the framework to actual HTS data and a real TD-OD matrix for Singapore. External dataset will be used
for validation.
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