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1 Introduction 

This study proposes network-wide optimum signal control using Multi-Agent Reinforcement 
Learning (MARL) based on the decomposition of the reward into individual intersections 
considering the property of traffic wave propagation. The proposed MARL-based control is 
theoretically proved to yield the network-wide optimum for a general network. The proposed 
method is validated under both undersaturated and oversaturated scenarios with queue blocking 
back.    

In general, a network-wide optimum signal control is a complex problem and the mathematical 
analysis is not straightforward because the formulation of dynamic traffic flow with queues is 
difficult due to variety of signal phase configurations and intersection geometries. Among the huge 
amount of past literatures, Smith (1979, 1984, 2015) provided theoretically interesting discussions 
on control strategies that maximize network capacity considering route choice but did not fully 
consider queue blocking back. 

Recently, Reinforcement Learning (RL) has been used for signal control because of its flexible 
applicability to various optimization problems. For a network with multiple intersections, MARL 
has been employed to obtain the optimum control in most recent studies (e.g., Chow et al. (2020), 
Li et al. (2021), Haddad et al. (2022)). However, in general, MARL-based approach cannot 
guarantee to establish the network-wide optimum control, since every individual agent behaves so 
as to optimize its own return not the return for an entire network. Although previous MARL-based 
approaches introduce some cooperative arrangements among intersections (agents) to capture their 
interactions for getting closer to the network-wide optimum,  they still do not guarantee to establish 
the network-wide optimum.  

One of the issues on the existing MARL-based approach is that traffic flow characteristics have 
not been sufficiently addressed. Therefore, this study formulates the signal control problem as 
Markov Decision Process (MDP) considering propagations of forward and backward traffic waves 
generated by signal control at intersections. Utilizing the property of wave propagations, we show 
a gentle condition that makes the MARL-based approach establish the network-wide optimum. 
Although user choice behavior, especially route choice, is not considered in this study, feasibility 
of the extension to include choice behavior is discussed.   
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2 Control Objective and Wave Propagations 

 
2.1 Network and Demand 

A node with a traffic light is an intersection node denoted as node j, j = 1, 2, ……, J, and a node 
generating or absorbing traffic demand is a centroid. A link is described as ( , )i j , a pair of its starting 
node i and terminal nodes j. Sets of nodes and links are denoted as N and L respectively. Traffic 
demand is assumed given and the diverging ratios at intersection nodes remain fixed due to the 
assumption of fixed vehicle routes. Nodes are connected by a single directed link for each direction 
as shown in Figure 1, illustrating a segment of the entire network. For intersection j, its adjacent 
nodes and links are delineated in red, and their sets are denoted as jN N∈ , jL L∈  and j kL L =∅  
if j k≠ . 
 

 
2.2 Control Objective 

Let us first discuss the signal control objective and its characteristics in relation to the wave 
propagation of traffic flow on a network based on kinematic wave theory. First of all, the following 
cumulative vehicle counts are defined for link ( , )i j , ( , )i j L∀ ∈ . 

( )ijA t   = the cumulative number of vehicles entering link ( , )i j  by time t,  

' ( )ijA t   = the cumulative number of vehicles on link ( , )i j  arriving at node j without  

delay by time t 
  = ( )f

ij ijA t W− ,  

( )ijD t   = the cumulative number of vehicles leaving link ( , )i j  by time t,  
f

ijW  = free flow travel time on link ( , )i j . 
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Figure 1:  Network configuration and wave propagations on links 
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The ' ( )ijA t  represents the hypothetical cumulative vehicles that could have arrived at the 
downstream end of link ( , )i j  by time t if delays do not occur. It is simply the horizontal translation 
of ( )ijA t  by a time displacement of free flow travel time: ' ( ) ( )f

ij ij ijA t A t W= − . The difference 

between ' ( )ijA t  and ( )ijD t  is the appropriate measure of the number of vehicles in a queue on link 
( , )i j  at time t: 

 
( ) ' ( ) ( ) ( ) ( )f

ij ij ij ij ij ijq t A t D t A t W D t= − = − −  
= the number of vehicles in a queue on link ( , )i j  at time t, ( , )i j L∀ ∈ . (1) 

 
We employ the throughput maximization as the control objective. For traffic starting from 

origins to destinations along various routes on a network, the flow conservation at every node should 
be satisfied as follows: 

 
( ) ( )

( ) ( )
j j

ij jk
j j

i N k N

dD t dA t
o t d t

dt dt∈ ∈

+ = +∑ ∑ , j N∀ ∈ ,  (2) 

 
( )jo t , ( )jd t = demand rate originated from and absorbed at node j at time t. 

Because ( )jd t  denotes the flow rate arriving at destination j at time t, the total throughput is the 

sum of ( )jd t  for all nodes throughout the study period: 
0

( )
T

j
j N

d t dt
∈

 
 
 
∑∫ . From the flow 

conservation and Eq.(1), total throughput is expressed as follows: 

0 0

0 0
( , )

0 0
( , )

( ) ( )
( ) ( )

( ) ( )
( )

( )
( ) .

j j

T T ij jk
j j

j N j N i N k N

f
T Tij ij ij

j
i j L j N

T Tij
j

i j L j N

dD t dA t
d t dt o t dt

dt dt

dD t dA t W
dt o t dt

dt dt

dq t
dt o t dt

dt

∈ ∈ ∈ ∈

∈ ∈

∈ ∈

    = − +   
    
 −   = − +   
    

   
= − +   

   

∑ ∑ ∑ ∑∫ ∫

∑ ∑∫ ∫

∑ ∑∫ ∫

  (3) 

 

Since the demand from origins, 
0

( )
T

j
j N

o t dt
∈

 
 
 
∑∫ , is given, throughput maximization is equivalent 

to the following: 
 

Throughput Maximization ≡ 
0

( , )

( )T ij

i j L

dq t
Max dt

dt∈

 
− 
 
∑∫ . (4) 
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2.3 Forward and Backward Wave Propagations 
When an intersection is controlled by the signal, forward and backward waves are generated from 
the intersection node. Travel times of these waves traversing links are defined as follows: 

 
( )f

ijW t  = Travel time of forward wave generated from node i traveling on link ( , )i j  and 
arriving at node j at time t, ( , )i j L∀ ∈ , 

( )b
ijW t  = Travel time of backward wave generated from node j traveling backward on 

link ( , )i j  and arriving at node i at time t, ( , )i j L∀ ∈ . 
 
As depicted in Figure.1, there must be always some time-lag, which is equal to the wave travel time, 
between time when an intersection is controlled and time when the generated wave arrives at the 
adjacent intersection. We will utilize this time-lag later for the MARL-based signal control. 

3 Reinforcement Learning 

3.1 Action 

We propose designing the Reinforcement Learning (RL) process within a discretized time axis, 
partitioning time into uniform intervals denoted by t∆ , and time step t is defined as [ , )t t t+ ∆ . 
Continuous time t and discrete time step t are used interchangeably according to the context. For 
each intersection j, the phase configuration is assumed given and action j

ta  is defined as the choice 
of one of the given phases at intersection j during time step t. If the number of phases at intersection 
j is jp , action j

ta  is an integer number from 1 to jp . A set of actions at all intersections at the time 

step t is denoted as ( )1 2 3, , ,......., J
t t t t ta a a a a= . 

 
3.2 State 

State ts  is the collective traffic conditions covering all intersections at the onset of time step t, that 

corresponds to continuous time t. For each intersection j, state j
ts  is defined as traffic conditions on 

links ( , ) ji j L∈  at time step t. The collective array of states for all intersections is denoted as 

( )1 2 3, , ,......., J
t t t t ts s s s s= . 

 
3.3 Reward 

Reward 1tr +  is compensation at the end of time step t by taking action ta  under state ts . If the traffic 
environment adheres to the Markov property, reward 1tr +  depends only on state ts  and action ta , 
and it can thus be written as 1( , )t t tr s a+ . This reward aligns with the signal control objective as shown 
in Eq.(4),  which is a function of queues. Given ( )ijq t , ( )ijq t∆  is rewritten on the continuous time 

as ( ) ( ) ( ) { ' ( ) ( )} ( ).ij ij ij ij ij ijq t q t t q t A t t D t t q t∆ = + ∆ − = + ∆ − + ∆ −  The ' ( ) ( )ij ijA t t D t t+ ∆ − + ∆  is the 
inflow rate minus outflow rate on link ( , )i j  during [ , )t t t+ ∆  and hence depends on state ts  and 
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action ta  during the time step. Given ( )ijq t , ( )ijq t∆  is therefore written as a function of ts  and ta : 

( ) ( , )ij ij t tq t q s a∆ = ∆ . Then, the reward is also written as 1
( , )

( , ) ( , )t t t ij t t
i j L

r s a q s a+
∈

= − ∆∑ .                                     

As explained using Figure 1, links ( , ) ji j L∈  associated with individual intersection j do not 
overlap each other, reward 1( , )t t tr s a+  is separable for each associated intersection and written as the 
sum of rewards at individual intersections: 

 
1 1( , ) ( , )j

t t t t t t
j

r s a r s a+ +=∑ ,          (5) 

1
( , )

( , ) ( , ), 1, 2,......,
j

j
t t t ij t t

i j L
r s a q s a j J+

∈

= − ∆ =∑ .   

3.4 Action-value 

The action-value function ( , )t tQ s aπ  under policy ( )t ta sπ  is written below as the expected return 

starting from state ts , taking action ta , and then following policy ( )t ta sπ : 
 

2
1 2 1 1 3 2 2 1( , ) [ ( , ) ( , ) ( , ) ...... ( , ) , ]T t

t t t t t t t t t t t T T T t tQ s a E r s a r s a r s a r s a s aπ π γ γ γ −
+ + + + + + + += + + + + ,  (6) 

 
where  [0, 1]γ ∈  = the discount rate. 

 
Under the Markov property in the study environment, the action-value is written as the following 
recursive form explicitly using policy ( )t ta sπ :  
 

1

1 1 1 1 1( , ) ( , ) [ ( ) ( , ) ],
t

t t t t t t t t t t t
a

Q s a r s a E a s Q s a s aπ πγ π
+

+ + + + += + ∑ .   (7) 

where ( )t ta sπ = probability to take action ta  when state is ts , 
 
3.5 Decomposition of reward into individual intersections 

Generally, 1( , )j
t t tr s a+  for individual intersection j is not independent each other because they depend 

on action ta  and state ts  at all intersections. However, as discussed in the previous section, a time-
lag always exists between the time of signal control and the time when the wave caused by the 
control propagates to the adjacent intersections. Let us assume that the time-lag, equal to the wave 
travel time, always exceeds the discrete time interval t∆ : 
 

min ( ) min ( ) , ( , )f f b b
t ij ij t ij ijW t W t W t W t i j L= > ∆ = > ∆ ∀ ∈ .                               (8) 

 
This condition seems quite feasible because the order of t∆  is a few seconds which would be 
smaller than wave travel time between intersections normally apart each other at least 100 meters 
in urban areas; that is, wave travel time would likely be more than a few seconds. 
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To evaluate ' ( )ijA t , it is sufficient to know ( )ijA ⋅  until f
ijt W−  as shown in Figure 1. And, to 

evaluate ( )ijD t  which could be affected by queue blocking back from the downstream, it is 

sufficient to know ( )jkD ⋅  on the downstream link ( , )j k  only until b
jkt W− , ,jk N k i∀ ∈ ≠ . If 

Condition (8) is satisfied, f
ijt W t t− < −∆  and b

jkt W t t− < −∆ . And, since ( )ijA ⋅  and ( )jkD ⋅  are 

controlled by the upstream and downstream traffic lights, ' ( )ijA t  and ( )ijD t  can be evaluated 
without being influenced by signal controls at other intersections after time t t−∆ . Therefore, 
reward 1

j
tr +  is written as a function of only its own action j

ta : 
 

1 1( , ) ( , )j j
t t t t t t

j
r s a r s a+ +=∑ .  (9)  

3.6 MARL-based network-wide control 

Since action-value ( , )t tQ s aπ  is the sum of future reward for an entire network, for network 
optimum control, action ta  must be taken to maximize ( , )t tQ s aπ  for any state ts  considering all 
intersections simultaneously. This means the following optimum policy should be taken: 

 
1 , arg max ( , )

( )
0 , otherwise

t a t
t t

a Q s a
a s ππ

 =
= 


 . (10) 

 
Let us denote the optimum policy as ‘*’ and plug Eq.(10) into Eq.(7). Then, the following Bellman 
optimality equation is obtained: 
 

1
* 1 * 1 1( , ) ( , ) [max ( , ) ],

t
t t t t t t t t ta

Q s a r s a E Q s a s aγ
+

+ + += + ,          0 t T≤ ≤ .  (11)               

 
       On the other hand, let us consider the MARL-based policy, ( )j j

t ta sπ , in which individual 

intersection j independently takes action j
ta  to maximize its own action-value for any state ts :  

 
1 , arg max ( , )

( )
0 , otherwise

j j
j j t a t

t t
a Q s a

a s ππ
 =

= 


 . (12) 

 
This MARL-based policy is denoted as ‘∆ ’ and it is plugged into Eq.(7) to obtain the following:  
 

1

1

1 1 1 1 1

1 1 1

( , ) ( , ) [ ( ) ( , ) ],

[ ( , ) [max ( , ) ]],

( , ) ,

j
t

j
t

j j j
t t t t t t t t t t t

j a

j j j
t t t t t t ta

j

j
t t

j

Q s a r s a E a s Q s a s a

r s a E Q s a s a

Q s a

γ π

γ
+

+

∆ + + + ∆ + +

+ ∆ + +

∆

= +

= +

=

∑∑

∑

∑

  (13) 
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where    
1

1 1 1( , ) ( , ) [max ( , ) ],j
t

j j j j
t t t t t t t t ta

Q s a r s a E Q s a s aγ
+

∆ + ∆ + += + .           (14) 

                               = individual action-value under policy ∆  
 
If max ( , )j

t

j
t ta

j
Q s a∆∑  is equal to *max ( , )

t
t ta

Q s a  for any state ts , we can say that the MARL-

based control achieves the network-wide optimum. The following is the proof of this.  
First of all, at the final time step T, since the next state at time step 1T +  is out of the study 

period, ( , )j
T TQ s a∆  is equal to 1( , )j j

T T Tr s a+  which depends on only its own action j
Ta , given Ts . Thus, 

max ( , )j
T

j
T Ta

j
Q s a∆∑  becomes equal to *max ( , )

T
T Ta

Q s a  as shown below.  

 
1

1 *

max ( , ) max ( , )

max ( , ) max ( , )

j j
T T

T T

j j j
T T T T Ta a

j j

j j
T T T T Ta a

j

Q s a r s a

r s a Q s a

∆ +

+

=

= =

∑ ∑

∑
  (15) 

 
Next, at one time step earlier 1T − , based on the above result, 

1
1 1max ( , )j

T

j
T Ta

j
Q s a

−
∆ − −∑  is 

shown to be equal to 
1 * 1 1max ( , )

Ta T TQ s a
− − −  as follows: 

 

1 1

1

1

1 1 1 11 1

1 1 1 1

1 1 * 1 1

( , ) [max ( , ) ],max ( , ) max

( , ) [max ( , ) ],max

( , ) [max ( , ) ],max

max

jj j
TT T

j
T T

T T

j j jj
T T T T T T TT T aa a

j j

j j j
T T T T T T Ta a

j

T T T T T T Ta a

r s a E Q s a s aQ s a

r s a E Q s a s a

r s a E Q s a s a

γ

γ

γ

− −

−

−

− − ∆ − −∆ − −

− − ∆ − −

− − − −

 +=  

 +=  

 +=  
=

∑ ∑

∑

1 * 1 1( , )
Ta T TQ s a
− − −

 (16) 

 
The right-hand side on the first line comes from Eq.(14). Given 1Ts − , within [     ] for agent j on the 
first line, 1 1( , )j j

T T Tr s a− −  depends only on 1
j

Ta − , while 1( , ) ( , )j j j
T T T T TQ s a r s a∆ +=  depends on state Ts  

and action j
Ta . However, given 1Ts − , whatever action each agent independently takes at time step 

1T − , next state 1 1( , )T T Ts s a− −  is realized by the resulted action ( )1 2
1 1 1 1 1, ,....., ,...,j J

T T T T Ta a a a a− − − − −= . 

Therefore, given 1Ts −  and 1Ta − , ( , )j
T TQ s a∆  depends only on j

Ta , and hence maximization of 
( , )j

T TQ s a∆  with respect to j
Ta , 1 1{max ( , ) },j

T

j
T T T Ta

Q s a s a∆ − − , is feasible. As a whole, [     ] equal to 

1 1( , )j
T TQ s a∆ − −  for agent j depends only on its own action 1

j
Ta −  but independent of actions of others. 

Consequently, given 1Ts − , if each agent j independently chooses action 1
j

Ta −  to maximize 

1 1( , )j
T TQ s a∆ − − , next state Ts  is realized by chosen 1Ta −  and 1 1( , )j

T TQ s a∆ − − ’s become independent 
each other under 1Ta − . For this reason, the second line is derived. Finally, by plugging Eq.(15)  into 
the second line, the third and fourth lines are obtained.         
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Repeating the same procedure backward along the time step, max ( , )j
t

j
t ta

j
Q s a∆∑  is proved to 

be equal to *max ( , )
t

t ta
Q s a  for any time step t, 0 t T≤ ≤ :   

 
*max ( , ) max ( , ), 0 .j

t t

j
t t t ta a

j
Q s a Q s a t T∆ = ≤ ≤∑      (17) 

 
This is the most important finding in this study; that is, ‘action-value * ( , )t tQ s a  representing 

the expected sum of future reward for an entire network from any state ts  can be maximized by the 
individual maximization of ( , )j

t tQ s a∆  under the MARL-based control’. Normally, under the MARL-
based control, the individual maximization of the actin-value does not lead to the maximization of 
the whole action-value because the reward of an agent is influenced by actions of others. However, 
if reward 1( , )j j

t t tr s a+  depends on only its own action j
ta  under Condition (8), the MARL-based 

control establishes the network-wide optimum. Based on this result, if each intersection learns 
( , )j

t tQ s a∆  through MARL and chooses action j
ta  so as to maximize ( , )j

t tQ s a∆  for any state ts , 
such decentralized action at every intersection can optimize the network-wide control.  Since the 
proposed method just fit with the standard MARL framework, any of MARL algorithms can be 
applied to find ( , )j

t tQ s a∆ .  
Using the above MARL-based approach, considerable action space can be saved. Also, 

regarding the state space, while the formulation uses state ts  across all intersections for 
generalization purposes, the concept of a state as an abstract representation of the environment can 
be tailored to support for an agent to appropriately select its action. Since intersection j selects its 
own action j

ta  in our problem, intersection j may not need conditions of intersections apart from j, 
but may suffice to consider state associated with its neighbor or exclusively associated with its own 
traffic conditions on links ( , ) ji j L∈ . The state design is examined in case studies in next section. 

Due to the action and state space savings, ( , )j
t tQ s a∆  could be efficiently estimated by less amount 

of training. Furthermore, actions and states can keep the same designs of their elements even if the 
number of intersections changes. 
 
4 Case Studies 

The case study is performed to confirm if the proposed MARL-based control could yield the 
network-wide optimum. For this purpose, we intend to design a simple network consisting of one-
way links with no turning movements dealing with constant traffic demand to easily compare with 
control by the conventional signal control theory. It is important to note that the theoretical 
framework proposed is not limited to these simplified network and demand configurations. 
Although, only a case study under an oversaturated scenario is presented in this abstract, we have 
validated the proposed control indeed establishes the network-wide optimum in undersaturated as 
well as oversaturated conditions with queue blocking back.   
 
4.1 Network and traffic demand 

A network consists of 5 intersections with all one-way links as shown in Figure 2. Nodes 1 to 5 are 
intersections and nodes 6 to 17 are centroids. Major links are running in the EW direction with the 
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saturation flow rate of 1800 [veh/h], while all minor links are running in the NS direction with the 
saturation flow rate of 1440 [veh/h]. The lengths of all minor links are 1000 [m], whereas those of 
the major links are 200 [m] with the exception of four links at both ends. For all links, a triangular 
fundamental diagram is applied in which the fixed forward and backward wave speeds are assumed 

10f
ijv =  [m/s] (=36 [km/h]) and 2.78b

ijv = −  [m/s] (= -10 [km/h]) respectively. The discrete time 
step t∆  is 5 [s] so that Condition (8) is satisfied by the wave travel times > 5 [s] for all links. 

The traffic demand rate is assumed constant and departs as well as arrives uniformly at all 
intersections (no stochasticity). The constant OD demand rate of 900 [veh/h] is supplied from 
centroids 6→7 on the major links, whereas the demand rate of 720 [veh/h] is supplied on every  
minor link in S→N direction. Therefore, the network is oversaturated because the saturation degrees 
on both the major and minor links become 0.5 (= 900/1800 = 720/1440) at all intersections. 
4.2 Traffic model 
To evaluate the cumulative curves ( )ijA t  and ( )ijD t  for all ( , )i j L∈ , we use the CTM (Cell 
Transmission Model; Daganzo, 1995), which is a well-known traffic simulation model based on the 

kinematic wave theory. For the CTM, a triangular fundamental diagram with the same forward and 
backward speeds as those mentioned above is used. The length of a cell is 50 [m] and the scan 
interval is 5 [s] because the free flow travel speed is 10 [m/s]. 

4.3 Signal control 

At every intersection, traffic is assumed to go straight only (no turnings) and all intersections are 
assumed to use a simple two-phase signal control: greens in the EW and in NS directions. Since 
oversaturated cases are examined, the green time is bounded by the 75-seconds maximum and the 
15-seconds minimum because otherwise the cycle time could be infinity under an oversaturated 
condition. 

4.4 Reinforcement learning 

Action j
ta  at intersection j takes either 0 or 1: green is given to EW (NS) direction, if 0 (1)j

ta = . 

State ts , common for all intersections, is designed to include queues and inflows of all intersections 
at the end of time step t : 

Figure 2: Arterial with 5 signalized intersections 
                 

16  
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( )1( ), ' ( ), , ( , ) , 1, 2,.....,j

t ij ij t js q t A t a i j L j J−= ∆ ∈ = , (18) 
 
where  ' ( ) ' ( ) ' ( )ij ij ijA t A t t A t∆ = + ∆ −  . 

 

Since every intersection has two approach links, two ( )ijq t ’s and two ' ( )ijA t∆ ’s are included in ts  

for one intersection. Furthermore, the action in the previous time step, 1
j

ta −  is included. Therefore, 
state ts  consists of total 25 (= (2+2+1) * 5 intersections) elements. The reason for the inclusion of 

last action 1
j

ta −  is to consider the lost time equal to t∆  when selected actions (phases) are changed.  

For the MARL training, we use the Deep Q-Network in which three layers with 128 neurons 
each are designed. The discount rate γ  is 0.95 and the ε-greedy parameter is assumed to decrease 
linearly from an initial value of 0.5 to 0.0 at the final episode. The MARL is trained with 200 
[episodes] with 360 [time steps/ episode] for all the cases. 

4.5  Case study : Oversaturated Scenario 

The total demand from all minor links is 3600 [veh/h] (=720 [veh/h] times 5 origins) which is 
significantly larger than the demand of 900 [veh/h] on the major links. Also, the total saturation 
flow rate on 5 minor links is 720*5=3600 [veh/h] larger than 1800 [veh/h] of the major link. 
Therefore, the priority should be given to the minor links at all intersections to maximize the 
throughput. To fully discharge demands on the minor links, 50% of the cycle time should be used 
for them, and the rest of 50% should be assigned to green on the major links and the 10-second lost 
time. Clearly, to maximize the throughput, the longer cycle time is advantageous by giving the 
maximum green time to the minor links. The optimal signal parameters are therefore ˆ

majorG = 65 [s], 
ˆ

minorG = 75 [s], and Ĉ = 150 [s]. Under this control, the average flow rate on the major link is 780 
[veh/h] (=1800*65/150), and the queue on the major link grows at the rate of 120 [veh/h] (=900-
780). 
 After the training, signal parameters of majorG = 64 [s] and minorG = 74 [s] are obtained as the 
average values during the last 90 time steps as shown in Figure 3. The yielded green times are 
almost consistent with the optimum control that prioritizes the minor links. The queues are growing 
nearly at the expected rate of 120 [veh/h] on the major links but a queue vanishes at the end of green 
on every minor link due to the given priority. This is the clear evidence that the proposed MARL-
based control yields the network-wide optimum with autonomous coordination that maximizes the 
throughput. Since the network consists of all one-way links, an upstream intersection is not directly 
influenced by traffic waves from downstream intersections. However, they are still autonomously 
coordinated each other to give the priority to the minor links. If each intersection were to concern 
only its own throughput, the priority must have been given to the major link because of the larger 
demand and saturation flow rate of 1800 [veh/h] than those on the minor link. 
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Figure 4 shows the result using the state including queues and inflows only associated with 
an individual intersection; that is, the number of state elements equal to 9 (= (4+4+1)). The yielded 
signal parameters are majorG = 69 [s] and  minorG = 75 [s] also close to the optimum and the queues 
completely disappear on the minor links. This almost same result as in Figure 3 suggests the 
possibility that the state element does not have to include the entire traffic condition over the 
network but only the condition around individual intersections. 

 
5 Summary 
 
This study theoretically argues that the MARL-based signal control using MARL can achieve the 
network-wide optimum control even in the absence of collaborative arrangements among 
intersections. The argument is grounded on the fact that traffic waves caused by signal control at an 
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Figure 3: Cumulative curves resulted in oversaturated condition (25 state elements) 
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Figure 4: Cumulative curves resulted in oversaturated condition (9 state elements) 
(the state includes inflows and queues associated with an individual intersection)  
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intersection always take some time to propagate to other intersections. This property, common 
across diverse traffic flows, suggests the potential extension of this decentralized optimization to 
other traffic controls, such as ramp control. Moreover, beyond the realm of traffic and transportation, 
similar MARL-based approaches might find applications in systems where the impact of an agent’s 
action influences others after a certain duration. 
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