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1. INTRODUCTION 

Activity-based models (ABMs) describe travel demand as the outcome of activity time-use decisions. 

ABMs estimate how individuals seek to fulfill their preferences to engage in various recreational and 

social activities and distribute time across these activities within a given time budget (Arentze and Tim-

mermans, 2004; Bhat, 2005).  

Multiple discrete-continuous choice models are suitable to elicit such activity time-use decisions as they 

can jointly model discrete alternative choices and continuous budget allocation (Hanemann, 1984). The 

current model formulation by Bhat (2005, 2008) addresses past limitation through a multiplicative log-

extreme value error term in the utility function. The MDCEV model, as an extension of the multinomial 

logit (MNL) model, provides a closed-form choice probability functions for modeling multiple discrete 

and continuous preferences. However, existing MDCEV studies typically assume, based on domain 

knowledge, how satiation affects the utility function. These assumptions may not align with intuitive or 

observed behavior (e.g., monotonically increasing utilities fail to capture attributes with potential non-

monotonic patterns) (Wang and Ye, 2024). Neural networks can significantly enhance the predictability 

of utility-based models by flexibly capturing the nonlinear relationships (Sifringer et al., 2020; Han et 

al. 2022). However, the excessive flexibility of neural networks may lead to violation of domain 

knowledge assumptions or result in misinterpretations (Kim and Bansal, 2024). There is a need to spec-

ify utility functions through more interpretable yet flexible functions than traditional neural networks 

that can accommodate various functional forms. The lattice network (LN) (You et al., 2017) can flexibly 

represent utility functions as piecewise linear functions. A recent study by Kim and Bansal (2024) 

demonstrated the application of LN to specify utility functions in a discrete choice model that maintains 

partial monotonicity for a subset of attributes (e.g., utility decreases as travel cost increases) while of-

fering flexibility comparable to neural networks. 

This study proposes a novel method to flexibly and interpretably estimate the parameters of the MDCEV 

model using LNs. Compared to traditional MDCEV models, the proposed approach captures nonlinear 

and high-dimensional relationships while providing a more flexible representation of how individuals 

allocate time across various activities. 

2. METHODOLOGY 

Lattice networks 

The traditional MDCEV model assumes a monotonically increasing utility with continuous consump-

tion, limiting its ability to capture non-monotonic utility patterns (Wang and Ye, 2024). Consequently, 

utility misspecification can induce bias in inference of attribute effects and reduce the predictability 

(Sifringer et al., 2020). Deep neural networks (DNN) flexibly model the complex relationships in large-

scale data, without relying on theoretical assumptions (van Cranenburgh et al., 2022). However, their 

complex structure results in low interpretability (Lipton, 

2018) and sometimes produce counter-intuitive inferences 

regarding attribute effects (Wang et al., 2021). 

Lattice networks (LN) offer both flexibility and interpret-

ability for discrete choice modeling by representing utility 

functions in a piecewise linear form (Kim and Bansal, 

2024). LN consist of three layers: input calibrators, lattice 

functions, and output calibrators. The input calibrators 

transform real-valued inputs into values within a specific 

interval using a piecewise linear function, preparing them 

for the lattice layer. Figure 1 illustrates an example of the 

piecewise linear transform in the input calibrators. 

The output calibration layer converts the lattice function’s output as utility. The output calibration layer 

has exactly the same function structure as the input calibration layer. 

Figure 1: Piecewise Linear Transform 

in the Input Calibrators 
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Model structure 

This study presents two data-driven models for activity time-use analysis. The first model,  MDCEV-

DNN, is a standard DNN that predicts discrete-continuous choice based on individual-specific attributes. 

The second model, MDCEV-LN, integrates DNN and LN, where DNN estimates 𝜓𝑘 (baseline utility) 

and LN estimates 𝛾𝑘 (satiation). Figure 2 shows the structure of the MDCEV-DNN model. This model 

uses DNN to transform individual-specific attributes 𝑥 into parameter 𝜓𝑘 for each activity. Applying 

the softmax function to 𝜓𝑘 outputs activity choice probabilities 𝑝(1), … , 𝑝(𝐾) that sum to 1. Multiply-

ing these probabilities by the total budget 𝑇 (24 hours for activity-time use analysis) provides prediction 

of time allocated to each activity. 

 
Figure 2: MDCEV-DNN Model Structure  

Figure 3 illustrates the structure of the MDCEV-LN model. The DNN transforms individual-specific 

attributes 𝒙 into parameter 𝜓𝑘, which is associated with discrete choice. In this context, the DNN learns 

complex relationships between individual-specific attributes and 𝜓𝑘 in a data-driven manner. The LN 

represents the satiation parameter 𝛾𝑘 as a piecewise linear function over time 𝒕. The utility for each 

alternative is calculated by multiplying 𝜓𝑘 and 𝑡1 for the outside good, and multiplying 𝜓𝑘 and 𝛾𝑘 for 

inside goods. Finally, applying the softmax function to the utility and multiplying by the total budget 𝑇 

outputs the predicted time allocation for each activity. 

 
Figure 3: MDCEV-LN Model Structure  

3. RESULTS AND DISCUSSION 

We conducted a simulation study using synthetic data to evaluate the performances of the proposed 

models. Following Saxena et al. (2022a), we generated 𝐿𝛾-profile simulation data for three scenarios. 

For detailed information about the synthetic data generation, refer to Saxena et al. (2022a). The three 

scenarios are distinguished by the proportion of inside goods as follows: 

(a) Scenario 1: Total budget of 50,000 units, with very small inside goods consumption averaging 

less than 1% of the total budget 

(b) Scenario 2: Total budget of 1,000 units, with moderate inside goods consumption averaging 

16% of the total budget 
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(c) Scenario 3: Total budget of 1,000 units, with significant inside goods consumption averaging 

43% of the total budget 

We trained the proposed models using 80% of the synthetic data and evaluated their performance on 

the remaining 20% test set. The model performance was evaluated using the Brier score and Root Mean 

Squared Error (RMSE). The Brier score decreases as prediction accuracy increases. Table 1 shows the 

performance of MDCEV, MDCEV-DNN and MDCEV-LN. 

Table 1: Performance Evaluation in the Simulation Study 

 Metrics Model Alt 1 Alt 2 Alt 3 Alt 4 

Scenario 1 Brier score MDCEV 0.0251 0.0033 0.0072 0.0143 

MDCEV-DNN 0.0203 0.0031 0.0067 0.0124 

MDCEV-LN 0.0006 0.0004 0.0004 0.0005 

RMSE MDCEV 7,928 2,860 4,246 5,976 

MDCEV-DNN 7,120 2,765 4,095 5,575 

MDCEV-LN 1,255 965 1,005 1,115 

Scenario 2 Brier score MDCEV 0.0299 0.0036 0.0088 0.0186 

MDCEV-DNN 0.0246 0.0034 0.0077 0.0162 

MDCEV-LN 0.0009 0.0004 0.0004 0.0004 

RMSE MDCEV 173.0 60.3 94.1 136.5 

MDCEV-DNN 156.8 58.3 87.6 127.4 

MDCEV-LN 30.8 20.1 19.1 20.1 

Scenario 3 Brier score MDCEV 0.1331 0.0786 0.0088 0.0625 

MDCEV-DNN 0.0928 0.0603 0.0083 0.0507 

MDCEV-LN 0.0030 0.0015 0.0011 0.0016 

RMSE MDCEV 364.8 280.3 93.8 250.1 

MDCEV-DNN 304.7 245.6 90.9 225.1 

MDCEV-LN 54.5 38.6 32.6 39.5 

Alt 1 represents the outside good, while Alt 2 through Alt 4 correspond to inside goods. The original 

MDCEV model showed low predictability despite the simulation data mimicking its data generation 

process. This aligns with the inconsistency of the original MDCEV reported in previous research 

(Saxena et al., 2022b). MDCEV-DNN showed higher predictability compared to MDCEV; however, 

the satiation effect cannot be isolated. The MDCEV-LN outperformed MDCEV-DNN in both Brier 

score and RMSE, demonstrating superior predictability. This suggests that the parameters captured by 

the MDCEV-LN structure accurately reconstruct the decision-making process of the 𝐿𝛾-profile simula-

tion data. Figure 5 compares the satiation effects estimated by the LN with the true log-linear satiation 

effects of the simulation data across all scenarios. Note that utility is computed as the product of 𝜓𝑘(𝑥) 

and 𝛾𝑘(𝑥); hence, their scales may differ. The vertical dotted lines in the figure represent the 95th per-

centile for each alternative. Values significantly exceeding the 95th percentile (on the right) are deemed 

invalid. As shown in the figure, the estimated 𝛾-functions across all scenarios and alternatives maintain 

a log-linear function trend, being monotonically increasing but with gradually decreasing slopes. The 

simulation study results across three scenarios with varying assumptions about the proportion of inside 

goods suggest that MDCEV-LN has potential to understand satiation effects without relying on hand-

crafted assumptions about the utility function, extending its applicability to various discrete-continuous 

choice modeling contexts such as activity time-use, energy consumption and vehicle purchases. 

4. CONCLUSIONS 

Traditional MDCEV models that rely on hand-crafted utility specifications suffer from issues of infer-

ence bias and low predictability. This study proposed MDCEV-LN that estimates MDCEV model’s 

satiation parameters using LN. LN derive flexible yet interpretable utility functions without utility spec-

ification by employing piecewise linear functions and multilinear interpolation. 

We generated synthetic data following the 𝐿𝛾-profile and conducted a simulation study to recover the 

parameters using MDCEV-LN. In the simulation study, MDCEV-LN showed higher predictability 

compared to the benchmarked original MDCEV and MDCEV-DNN. Also, it efficiently separates base-

line marginal utility from satiation effect and captures the log-linear trend of the satiation parameter. 
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MDCEV-LN’s high performance across multiple scenarios with varying proportions of inside goods 

suggests its potential for application in various discrete-continuous choice contexts, including activity 

time-use, energy consumption, and vehicle purchases. 

This study only conducted a simulation study based on the 𝐿𝛾-profile; however, the flexible yet inter-

pretable characteristics of LN have the potential to outperform existing models on more complex utility 

specification with non-linear and interaction effects. We are conducting more extensive simulation stud-

ies using a non-linear specification in the data generating process to evaluate the potential of MDCEV-

LN in capturing the combination of monotonic and non-monotonic relationships between activity du-

ration and satiation effects, which are challenging to model with existing approaches. 

 

 

Figure 5: Satiation Effects Estimated by the MDCEV-LN Model 
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